DOI QR코드

DOI QR Code

Biocide sodium hypochlorite decreases pigment production and induces oxidative damage in the harmful dinoflagellate Cochlodinium polykrikoides

  • Received : 2014.04.14
  • Accepted : 2014.11.22
  • Published : 2014.12.15

Abstract

The biocide sodium hypochlorite (NaOCl) is widely used for controlling algal growth, and this application can be extended to marine environments as well. This study evaluates the biocidal efficiency and cellular toxicity of NaOCl on the harmful dinoflagellate Cochlodinium polykrikoides, with emphasis on pigment production and antioxidant enzyme activity. The test organism showed dose-dependent decrease in growth rate on exposure to NaOCl, and the 72 h $EC_{50}$ was measured to be $0.584mg\;L^{-1}$. NaOCl significantly decreased pigment levels and chlorophyll autofluorescence intensity, indicating possible detrimental effects on the photosystem of C. polykrikoides. Moreover, it significantly increased the activities of antioxidant enzymes, suggesting the production of reactive oxygen species in the cells. These data indicate that NaOCl exerted deleterious effects on the photosynthetic machinery and induced oxidative damage in the dinoflagellate and this biocide could be effectively used for the control of algal blooms.

Keywords

References

  1. Arnhold, J., Mueller, S., Arnold, K. & Grimm, E. 1991. Chemiluminescence intensities and spectra of luminol oxidation by sodium hypochlorite in the presence of hydrogen peroxide. J. Biolumin. Chemilumin. 6:189-192. https://doi.org/10.1002/bio.1170060309
  2. Bajszar, G. & Dekonenko, A. 2010. Stress-induced Hsp70 gene expression and inactivation of Cryptosporidium parvum oocysts by chlorine-based oxidants. Appl. Environ. Microbiol. 76:1732-1739. https://doi.org/10.1128/AEM.02353-09
  3. Beauchamp, C. & Fridovich, I. 1971. Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal. Biochem. 44:276-287. https://doi.org/10.1016/0003-2697(71)90370-8
  4. Cabiscol, E., Tamarit, J. & Ros, J. 2000. Oxidative stress in bacteria and protein damage by reactive oxygen species. Int. Microbiol. 3:3-8.
  5. Clesceri, L. S., Greenberg, A. E. & Eaton, A. D. 1998. Standard methods for the examination of water and wastewater. American Public Health Association, Washington, DC, 1220 pp.
  6. Ebenezer, V. & Ki, J.-S. 2012. Evaluation of the sub-lethal toxicity of Cu, Pb, bisphenol A and polychlorinated biphenyl to the marine dinoflagellate Cochlodinium polykrikoides. Algae 27:63-70. https://doi.org/10.4490/algae.2012.27.1.063
  7. Ebenezer, V. & Ki, J.-S. 2013. Physiological and biochemical responses of the marine dinoflagellate Prorocentrum minimum exposed to the oxidizing biocide chlorine. Ecotoxicol. Environ. Saf. 92:129-134. https://doi.org/10.1016/j.ecoenv.2013.03.014
  8. Ebenezer, V., Nancharaiah, Y. V. & Venugopalan, V. P. 2012. Chlorination-induced cellular damage and recovery in marine microalga, Chlorella salina. Chemosphere 89:1042-1047. https://doi.org/10.1016/j.chemosphere.2012.05.067
  9. Estrela, C., Estrela, C. R. A., Barbin, E. L., Spano, J. C. E., Marchesan, M. A. & Pecora, J. D. 2002. Mechanism of action of sodium hypochlorite. Braz. Dent. J. 13:113-117. https://doi.org/10.1590/S0103-64402002000200007
  10. Hahn, S., Melching-Kollmuss, S., Bitsch, A., Schneider, K., Oltmanns, J., Hassauer, M., Schuhmacher-Wolz, U., Voss, J.-U., Gartiser, S., Jager, I. & Mangelsdorf, I. 2005. Health risks from biocide-containing products and articles of daily use. Project Funding Number (UFOPLAN) 204 61 218/05. German Federal Environmental Agency, Hannover, 20 pp.
  11. Halliwell, B. 2006. Reactive species and antioxidants: redox biology is a fundamental theme of aerobic life. Plant Physiol. 141:312-322. https://doi.org/10.1104/pp.106.077073
  12. Heath, R. L. & Packer, L. 1968. Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch. Biochem. Biophys. 125:189-198. https://doi.org/10.1016/0003-9861(68)90654-1
  13. Ken, C. F., Hsiung, T. M., Huang, Z. X., Juang, R. H. & Lin, C. T. 2005. Characterization of the Fe/Mn-superoxide dismutase from diatom Thallassiosira weissflogii: cloning, expression, and property. J. Agric. Food Chem. 9:1470-1474.
  14. Kudela, R. M. & Gobler, C. J. 2012. Harmful dinoflagellate blooms caused by Cochlodinium sp.: global expansion and ecological strategies facilitating bloom formation. Harmful Algae 14:71-86. https://doi.org/10.1016/j.hal.2011.10.015
  15. Leichert, L. I., Gehrke, F., Gudiseva, H. V., Blackwell, T., Ilbert, M., Walker, A. K., Strahler, J. R., Andrews, P. C. & Jakob, U. 2008. Quantifying changes in the thiol redox proteome upon oxidative stress in vivo. Proc. Natl. Acad. Sci. U. S. A. 105:8197-8202. https://doi.org/10.1073/pnas.0707723105
  16. Levasseur, M., Thompson, P. A. & Harrison, P. J. 1993. Physiological acclimation of marine phytoplankton to different nitrogen sources. J. Phycol. 29:587-595. https://doi.org/10.1111/j.0022-3646.1993.00587.x
  17. Li, X., Ping, X., Xiumei, S., Zhenbin, W. & Liqiang, X. 2005. Toxicity of cypermethrin on growth, pigments, and superoxide dismutase of Scenedesmus obliquus. Ecotoxicol. Environ. Saf. 60:188-192. https://doi.org/10.1016/j.ecoenv.2004.01.012
  18. Li, X. J., Gu, J., Lu, S. D. & Sun, F. Y. 2002. Melatonin attenuates MPTP-induced dopaminergic neuronal injury associated with scavenging hydroxyl radical. J. Pineal. Res. 32:47-52. https://doi.org/10.1034/j.1600-079x.2002.10831.x
  19. Ma, Z., Gao, K., Li, W., Xu, Z., Lin, H. & Zheng, Y. 2011. Impacts of chlorination and heat shocks on growth, pigments and photosynthesis of Phaeodactylum tricornutum (Bacillariophyceae). J. Exp. Mar. Biol. Ecol. 397:214-219. https://doi.org/10.1016/j.jembe.2010.12.009
  20. Mishra, S., Jha, A. B. & Dubey, R. S. 2011. Arsenite treatment induces oxidative stress, upregulates antioxidant system, and causes phytochelatin synthesis in rice seedlings. Protoplasma 248:565-577. https://doi.org/10.1007/s00709-010-0210-0
  21. Nancharaiah, Y. V., Rajadurai, M. & Venugopalan, V. P. 2007. Single cell level microalgal ecotoxicity assessment by confocal laser scanning microscopy and digital image analysis. Environ. Sci. Technol. 41:2617-2621. https://doi.org/10.1021/es0627390
  22. Organization for Economic Cooperation and Development. 2011. OECD guidelines for the testing of chemicals. Proposal for updating guideline 201. Freshwater alga and cyanobacteria, growth inhibition test. OECD Publications, Paris, 21 pp.
  23. Panasenko, O. M., Gorudko, I. V. & Sokolov, A. V. 2013. Hypochlorous acid as a precursor of free radicals in living systems. Biochemistry Mosc. 78:1466-1489. https://doi.org/10.1134/S0006297913130075
  24. Panasenko, O. M., Panasenko, O. O., Briviba, K. & Sies, H. 1997. Hypochlorite destroys carotenoids in low density lipoproteins thus decreasing their resistance to peroxidative modification. Biochemistry Mosc. 62:1140-1145.
  25. Park, S. Y., Choi, E. S., Hwang, J., Kim, D., Ryu, T. K. & Lee, T.-K. 2009. Physiological and biochemical responses of Prorocentrum minimum to high light stress. Ocean Sci. J. 44:199-204. https://doi.org/10.1007/s12601-009-0018-z
  26. Parsons, T. R., Maita, Y. & Lalli, C. M. 1984. A manual of chemical and biological methods for seawater analysis. Pergamon Press, Oxford, 184 pp.
  27. Patil, J. S. & Jagadeesan, V. 2011. Effect of chlorination on the development of marine biofilms dominated by diatoms. Biofouling 27:241-254. https://doi.org/10.1080/08927014.2011.559582
  28. Peker, I., Akca, G., Sarikir, C., Alkurt, M. T. & Celik, I. 2014. Effectiveness of alternative methods for toothbrush disinfection: an in vitro study. Sci. World J. 2014:726190.
  29. Peng, C.-C., Chyau, C.-C., Wang, H.-E., Chang, C.-H., Chen, K.-C., Chou, K.-Y. & Peng, R. Y. 2013. Cytotoxicity of ferulic acid on T24 cell line differentiated by different microenvironments. Biomed. Res. Int. 2013:579859.
  30. Rosen, H., Michel, B. R., van Devanter, D. R. & Hughes, J. P. 1998. Differential effects of myeloperoxidase-derived oxidants on Escherichia coli DNA replication. Infect. Immun. 66:2655-2659.
  31. Sato, M., Murata, Y., Mizusawa, M., Iwahashi, H. & Oka, S.-I. 2004. A simple and rapid dual-fluorescence viability assay for microalgae. Microbiol. Cult. Coll. 20:53-59.
  32. Sharma, P., Jha, A. B., Dubey, R. S. & Pessarakli, M. 2012. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J. Bot. 2012:217037.
  33. Shin, S.-Y., Lee, H.-S., Kwon, S.-Y., Kwon, S.-T. & Kwak, S. S. 2005. Molecular characterization of cDNA encoding copper/zinc superoxide dismutase from cultured cells of Manihot esculenta. Plant Physiol. Biochem. 43:55-60. https://doi.org/10.1016/j.plaphy.2004.12.005
  34. Soto, P., Gaete, H. & Hidalgo, M. E. 2011. Assessment of catalase activity, lipid peroxidation, chlorophyll-a and growth rate in the freshwater green algae Pseudokirchneriella subcapitata exposed to copper and zinc. Lat. Am. J. Aquat. Res. 39:280-285. https://doi.org/10.3856/vol39-issue2-fulltext-9
  35. Spickett, C. M., Jerlich, A., Panasenko, O. M., Arnhold, J., Pitt, A. R., Stelmaszynska, T. & Schaur, R. J. 2000. The reactions of hypochlorous acid, the reactive oxygen species produced by myeloperoxidase, with lipids. Acta Biochim. Pol. 47:889-899.
  36. Trampe, E., Kolbowski, J., Schreiber, U. & Kuhl, M. 2011. Rapid assessment of different oxygenic phototrophs and single-cell photosynthesis with multicolour variable chlorophyll fluorescence imaging. Mar. Biol. 158:1667-1675. https://doi.org/10.1007/s00227-011-1663-1
  37. Tripathi, B. N., Metha, S. K., Amar, A. & Gaur, J. P. 2006. Oxidative stress in Scenedesmus sp. during short-and long-term exposure to $Cu^{2+}$ and $Zn{2+}$. Chemosphere 62:538-544. https://doi.org/10.1016/j.chemosphere.2005.06.031
  38. Vitro, R., Manas, P., Alvarez, I., Condon, S. & Raso, J. 2005. Membrane damage and microbial inactivation by chlorine in the absence and presence of chlorine-demanding substrate. Appl. Environ. Microbiol. 71:5022-5028. https://doi.org/10.1128/AEM.71.9.5022-5028.2005
  39. Wang, Z.-H., Nie, X.-P., Yue, W.-J. & Li, X. 2012. Physiological responses of three marine microalgae exposed to cypermethrin. Environ. Toxicol. 27:563-572. https://doi.org/10.1002/tox.20678
  40. White, G. C. 2010. White's handbook of chlorination and alternative disinfectants. 5th ed. John Wiley & Sons, Inc., Hoboken, NJ, 1062 pp.
  41. Winter, J., Ilbert, M., Graf, P. C. F., Ozcelik, D. & Jakob, U. 2008. Bleach activates a redox-regulated chaperone by oxidative protein unfolding. Cell 135:691-701. https://doi.org/10.1016/j.cell.2008.09.024

Cited by

  1. Transcriptomic profiles reveal the genome-wide responses of the harmful dinoflagellate Cochlodinium polykrikoides when exposed to the algicide copper sulfate vol.17, pp.1, 2016, https://doi.org/10.1186/s12864-015-2341-3
  2. The exceptionally large genome of the harmful red tide dinoflagellate Cochlodinium polykrikoides Margalef (Dinophyceae): determination by flow cytometry vol.31, pp.4, 2016, https://doi.org/10.4490/algae.2016.31.12.6
  3. Chlorination induced damage and recovery in marine diatoms: Assay by SYTOX® Green staining 2017, https://doi.org/10.1016/j.marpolbul.2016.12.059
  4. Molecular cloning and oxidative-stress responses of a novel manganese superoxide dismutase (MnSOD) gene in the dinoflagellate Prorocentrum minimum vol.46, pp.6, 2014, https://doi.org/10.1007/s11033-019-05029-6
  5. Comparative responses of cell growth and related extracellular polymeric substances in Tetraselmis sp. to nonylphenol, bisphenol A and 17α-ethinylestradiol vol.274, pp.None, 2014, https://doi.org/10.1016/j.envpol.2021.116605