DOI QR코드

DOI QR Code

Progressive Collapse Analysis of Reinforced Concrete Core Structure Subjected to Internal Blast Loading

내부 폭발하중을 받는 철근콘크리트 코어의 연쇄붕괴 해석

  • Kim, Han-Soo (Dept. of Architectural Engineering, Konkuk University) ;
  • Ahn, Jae-Gyun (Dept. of Architectural Engineering, Konkuk University) ;
  • Ahn, Hyo-Seong (Dept. of Architectural Engineering, Konkuk University)
  • 김한수 (건국대학교 건축공학과) ;
  • 안재균 (건국대학교 건축공학과) ;
  • 안효승 (건국대학교 건축공학과)
  • Received : 2014.04.21
  • Accepted : 2014.10.20
  • Published : 2014.12.31

Abstract

In this paper, internal blast effect of reinforced concrete core structure were investigated using Ansys Autodyn, which is a specialized hydrocode for the analysis of explosion and impact. It is expected that internal blast case can give additional damage to the structure because it causes rebound of blast loads. Therefore, in this paper, the hazard of internal blast effect is demonstrated using UFC 3-340-02 criteria. In addition, analysis result of Autodyn, experimental result regarding rebound of blast load, and example of UFC 340-02 are compared to verify that Autodyn can analyze internal blast effect properly. Furthermore, progressive collapse mechanism of core structure which is one of the most important parts in high rise buildings is also analyzed using Autodyn. When internal blasts are loaded to core structure, the core structure is mostly damaged on its corner and front part of core wall from explosives. Therefore, if the damaged parts of core wall are demolished, progressive collapse of the core structure can be initiated.

본 논문에서는 철근콘크리트 코어 구조물의 내부폭발 효과를 폭발이나 충격해석에 특화되어 있는 하이드로코드인 Ansys Autodyn을 이용하여 조사하였다. 내부폭발의 경우 폭발하중의 반사효과로 인해 더욱 큰 파괴를 일으킬 수 있다. 그러므로, 본 논문에서는 UFC 3-340-02 를 사용하여 내부 폭발현상을 입증하였다. 추가적으로 Autodyn을 사용한 해석에 관하여 UFC에서 예제로 제시하는 폭발하중의 반사에 관한 실험 결과를 비교하여 Autodyn이 내부폭발 효과를 해석하는데 적합함을 증명하였다. 나아가, 초고층빌딩에서 가장 중요한 부분 중의 하나의 코어 구조의 붕괴메커니즘을 Autodyn을 사용하여 해석하였다. 내부폭발이 코어에 충격을 가할 때, 코어는 모서리와 폭발 정면 부분이 대부분 피해를 입었다. 그러므로, 코어 벽체가 피해를 입게 된다면 코어 구조물의 연쇄붕괴가 발생할 수 있다.

Keywords

References

  1. GSA, Progressive Collapse Analysis and Design Guidelines for New Federal Office Buildings and Major Modernization, U.S General Services Administration, 2003.
  2. DoD, Design of Buildings to Resist Progressive Collapse (UFC 4-023-03), U.S Department of Defense, 2010.
  3. Iribarren, S., Berke, P., Boulillard, Ph., and Massart, J., "Investigation of the Influence of Design and Material Parameters in the Progressive Collapse Analysis of RC Structures", Engineering Structures, Vol. 33, 2011, pp. 2805-2820. https://doi.org/10.1016/j.engstruct.2011.06.005
  4. Kim, J. An D., "Evaluation of Progressive Collapse Potential of Steel Moment Frames Considering Catenary Action", The Structural Design of Tall and Special Buildings, Vol. 18, 2009, pp. 455-465. https://doi.org/10.1002/tal.448
  5. Mohamed, A., "Assessment of Progressive Collapse Potential in Corner Floor Panels of Reinforced Concrete Buildings", Engineering Structures, Vol. 31, 2009, pp. 749-757. https://doi.org/10.1016/j.engstruct.2008.11.020
  6. Tsai, H. and Lin, H., "Dynamic Amplification Factor for Progressive Collapse Resistance Analysis of an RC Building", The Structural Design of Tall and Special Buildings, Vol. 18, 2009, pp. 539-557. https://doi.org/10.1002/tal.453
  7. Zukas, A., Introduction to Hydrocodes, Elsevier, UK, 2004, pp. 313.
  8. Jayasooriya, R., Thambiratnam, P., Perera, J., and Kosse, V., "Blast and Reidual Capacity Analysis of Reinforced Concrete Framed Buildings", Engineering Structures, Vol. 33, 2011, pp. 3483-3495. https://doi.org/10.1016/j.engstruct.2011.07.011
  9. Kelliher, D. and Sutton-Swaby, K., "Stochastic Representation of Blast Load Damage in a Reinforced Concrete Buildings", Structural Safety, Vol. 34, 2012, pp. 407-417. https://doi.org/10.1016/j.strusafe.2011.08.001
  10. Luccioni, M., Ambrosini, D., and Danesi, F., "Analysis of Building Collapse under Blast Loads", Engineering Structures, Vol. 26, 2004, pp. 63-71. https://doi.org/10.1016/j.engstruct.2003.08.011
  11. Shi, Y., Li, X., and Hao, H., "A New Method for Progressive Collapse Analysis of RC Frame under Blast Loading", Engineering Structures, Vol. 32, 2010, pp. 1691-1703. https://doi.org/10.1016/j.engstruct.2010.02.017
  12. Kim, H. S. and Park, J. P., "An Evaluation of Blast Resistance Performance of RC Columns According to the Shape of Cross Section", Journal of Computational Structural Engineering Institute of Korea, Vol. 23, No. 4, 2010, pp. 387-394.
  13. Kim, H. S. and Lee, J. Y., "An Evaluation of Blast Resistance Performance of RC Columns by Using P-M Interaction Diagram", Journal of Architectural Institute of Korea, Vol. 27, No. 10, 2011, pp. 47-54.
  14. Fairlie, G., "Efficient Analysis of High Explosive Air Blast in Complex Urban Geometries Using the AUTODYN-2D & 3D Hydrocodes", Analytical and Exprimental Methods, Proceedings of the 15th Int. Symposium on the Military aspects of Blast and Shock, Banff, Canada, 1997.
  15. Fairlie, G., "The Numerical Simulation of High Explosives using AUTODYN-2D & 3D, Proceedings of the Explo '98", Institute of Explosive Engineers 4th Biannual Symposium, 1998.
  16. Zhao, F., Chen, Y., Wang, Y., and Lu, J., "Damage Mechamism and Response of Reinforced Concrete Containment Structure under Internal Blast Loading", Theoretical and Applied Fracture Mechanics, Vol. 61, 2012, pp. 12-20. https://doi.org/10.1016/j.tafmec.2012.08.002
  17. Deng, G., "Research on Internal explosive Loadings and Blast Resistant Characteristics of Discrete Multi-layered Explosion Containment Vessels", Journal of Pressure Equipment and Systems, Vol. 6, 2008, pp. 217-224.
  18. Clutter, K., Mathis, T., and Stahl, W., "Modeling Evironmental Effects in the Simulation of Explosion Events", International Journal of Impact Engineering, Vol. 34, 2007, pp. 973-989. https://doi.org/10.1016/j.ijimpeng.2006.03.003
  19. Zheng, Y., Deng, G., Chen, Y., Sun, G., Hu, Y., Zhao, L., and Li, Q., "Experimental Investigation of Discrete Multilayered Vessels under Internal Explosion", Combustion, Explosion, and Shock Waves, Vol. 42, 2006, pp. 617-622. https://doi.org/10.1007/s10573-006-0095-6
  20. Kim, H. S., Ahn, H. S., and Ahn, J. G., "Erosion Criteria for the Blast Analysis of Reinforcement Concrete Members", Journal of Architectural Institute of Korea, Vol. 30, No. 3, 2014, pp. 21-28.
  21. Cho, H. B., Kim, J. J., Lee, J. H., Shin, J. K., Jeong, Y., and Kim, G. Y., "Evaluation on the Blast-Resistant Performance of Fiber Reinforced Concrete Box Structures by Contact Explosion and Pressure", Journal of 2013 Spring Conference of Korea Concrete Institute, 2013, pp. 369-370.
  22. Kinney, G. and Graham, K., Explosive Shocks in Air, U.S, 1985, pp. 137.
  23. Mays, G. and Smith, P., Blast Effect on Buildings, UK, 1995, pp. 40.
  24. DoD, Structures to Resist the Effects of Accidental Explosions (UFC 3-340-02), U.S Department of Defense, 2008.
  25. Smith, P.D., Hetherington J G, Blast and ballistic loading of structure, Laxton's, Great Britain, 1994, pp. 336.