DOI QR코드

DOI QR Code

MINIMAL BASICALLY DISCONNECTED COVERS OF P'-SPACES

  • Kim, Chang Il (Department of Mathematics Education, Dankook University) ;
  • Jung, Kap Hun (School of Liberal Arts, Seoul National University of Science and Technology)
  • Received : 2013.10.23
  • Accepted : 2013.11.22
  • Published : 2014.01.31

Abstract

Observing that for any P'-space X, ${\Lambda}vX$ is a P'-space if vX is a weakly Lindel$\ddot{o}$f space, (${\Lambda}vX{\times}{\Lambda}Y$, ${\Lambda}_X{\times}{\Lambda}_Y$) is the minimal basically disconnected cover of $X{\times}Y$ for a countably locally weakly Lindel$\ddot{o}$f space Y.

Keywords

References

  1. W.W. Comfort, N. Hindman, and S. Negrepontis, $F^{\prime}$-space and their product with P-spaces, Pacic J. Math. 28 (1969). 489-502 https://doi.org/10.2140/pjm.1969.28.489
  2. L. Gillman and M. Jerison, Rings of continuous functions, Van Nostrand, Princeton, New York, 1960.
  3. C.I. Kim, Minimal covers and filter spaces, Topology Appl. 72 (1996), 31-37. https://doi.org/10.1016/0166-8641(96)00009-0
  4. C.I. Kim, Minimal basically disconnected covers of product spaces , Commum. Korean Math. Soc. 21 (2006), 347-353. https://doi.org/10.4134/CKMS.2006.21.2.347
  5. J.R. Porter and R.G. Woods, Extensions and Absolutes of Hausdorff spaces, Springer, Berlin, 1988.
  6. A. I. Veksler, $P^{\prime}$-point, $P^{\prime}$-sets, $P^{\prime}$-spaces, Soviet. Math. Dokl. 14 (1973), 1443-1450.
  7. J. Vermeer, The smallest basically Disconnected preimage of a space , Topology Appl. 17 (1984), 217-232. https://doi.org/10.1016/0166-8641(84)90043-9

Cited by

  1. Convergence analysis of the rectangular Morley element scheme for second order problem in arbitrary dimensions vol.59, pp.11, 2016, https://doi.org/10.1007/s11425-015-0471-2