East Asian Mathematical Journal Vol. 30 (2014), No. 1, pp. 063–067 http://dx.doi.org/10.7858/eamj.2014.006

MINIMAL BASICALLY DISCONNECTED COVERS OF P'-SPACES

Chang Il Kim^{*} and Kap Hun Jung^{**}

ABSTRACT. Observing that for any P'-space X, ΛvX is a P'-space if vX is a weakly Lindelöf space, $(\Lambda vX \times \Lambda Y, \Lambda_X \times \Lambda_Y)$ is the minimal basically disconnected cover of $X \times Y$ for a countably locally weakly Lindelöf space Y.

1. Introduction

All spaces in this paper are assumed to be Tychonoff and $(\beta X, \beta_X)$ $((vX, v_X), resp.)$ denotes the Stone-Čech compactification (Hewitt realcompactification, resp.) of X.

Iliadis constructed the absolute of a Hausdorff space X, which is the minimal extremally disconnected cover (EX, π_X) of X and they turn out to be the perfect onto projective covers ([5]). To generalize extremally disconnected spaces, basically disconnected spaces, quasi-F spaces and cloz-spaces have been introduced and their minimal covers have been studied by various aurthors. In these ramifications, minimal covers of compact spaces can be nisely characterized.

In particular, Vermeer ([7]) showed that every Tychonoff space X has the minimal basically disconnected cover $(\Lambda X, \Lambda_X)$ and that for any compact space $X, \Lambda X$, is given by the Stone space $S(\sigma Z(X)^{\#})$ of a σ -complete Boolean subalgebra $\sigma Z(X)^{\#}$ of R(X).

In [1], Comfort, Hindman, and Negrepontis showed that X is a P-space and Y is a countably locally weakly Lindelöf space, then $X \times Y$ is a basically disconnected space.

The purpose of this paper is to construct the minimal basically disconnected covers of P'-spaces.

In [4], it showed that if X is a weakly P-space and Y is a countably locally weakly Lindelöf space, then $(\Lambda X \times \Lambda Y, \Lambda_X \times \Lambda_Y)$ is the minimal basically disconnected cover of $X \times Y$.

2000 Mathematics Subject Classification. Primary 54G05, 54C10, 54D20, 54G10. Key words and phrases. basically disconnected space, covering map, weakly Lindelöf space, P'-spaces.

* First author.

©2014 The Youngnam Mathematical Society

Received October 23, 2013; Accepted November 22, 2013.

^{**} Corresponding author.

In this paper, we will show that for any P'-space ([6]) X such that vXis a weakly Lindelöf space, ΛvX is a P'-space and that for any countably locally weakly Lindelöf space Y, $(\Lambda vX \times \Lambda Y, \Lambda_X \times \Lambda_Y)$ is the minimal basically disconnected cover of $X \times Y$.

For the terminology, we refer to [2] and [5].

2. Basically disconnected covers of *P'*-spaces

Let X be a space. The collection R(X) of all regular closed sets in X, when partially ordered by inclusion, becomes a complete Boolean algebra, in which the join, meet, and complementation operations are defined as follows : For any $A \in R(X)$ and any $\mathcal{F} \subseteq R(X)$.

$$\forall \mathcal{F} = cl_X (\cup \{F \mid F \in \mathcal{F}\}), \\ \land \mathcal{F} = cl_X (int_X (\cap \{F \mid F \in \mathcal{F}\})), \text{ and } \\ A' = cl_X (X - A). \end{cases}$$

A sublattice of R(X) is a subset of R(X) that contains \emptyset , X and is closed under finite joins and finite meets ([5]).

Let Z(X) be the set of all zero-sets in X and $Z(X)^{\#} = \{cl_X(int_X(A)) \mid A \in Z(X)\}$. Then $Z(X)^{\#}$ is a sublattice of R(X).

Recall that a map $f: Y \to X$ is called a *covering map* if it is a continuous, onto, perpect, and irreducible map.

Lemma 2.1. ([3], [5]) (1) Let $f : Y \to X$ be a covering map. Then the map $\psi : R(Y) \to R(X)$, defined by $\psi(A) = f(A)$, is a Boolean isomorphism and the inverse map ψ^{-1} of ψ is given by $\psi^{-1}(B) = cl_Y(f^{-1}(int_X(B))) = cl_Y(int_Y(f^{-1}(B)))$.

(2) Let X be a dense subspace of a space K. Then the map $\phi : R(K) \to R(X)$, defined by $\phi(A) = A \cap X$, is a Boolean isomorphism and the inverse map ϕ^{-1} of ϕ is given by $\phi^{-1}(B) = cl_K(B)$.

A lattice L is called σ - complete if every countable subset of L has join and meet. For any subset M of a Boolean algebra L, there is the smallest σ complete Boolean algebra σM of L containing M.

Let X be a space. Then $Z(X)^{\#}$ is a sublattice of R(X). Note that for any zero-set A in X, there is a zero-set B in βX such that $A = B \cap X$. Hence, by Lemma 2.1, $Z(X)^{\#}$, $Z(vX)^{\#}$ and $Z(\beta X)^{\#}$ are Boolean isomorphic. Moreover $\sigma Z(X)^{\#}$, $\sigma Z(vX)^{\#}$ and $\sigma Z(\beta X)^{\#}$ are Boolean isomorphic.

Definition 1. A space X is called *basically disconnected* if for any zero-set Z in X, $int_X(Z)$ is closed in X, equivalently, $Z(X)^{\#} = B(X)$, where B(X) is the set of all clopen sets in X.

A space X is a basically disconnected space if and only if βX is a basically disconnected space.

Suppose that X is a basically disconnected space. Then for any sequence (B_n) in B(X), $\bigwedge \{B_n \mid n \in N\} = cl_X(int_X(\cap \{B_n \mid n \in N\})) \in Z(X)^{\#}$

and $\bigvee \{B_n \mid n \in N\} = cl_X(int_X(\cup \{B_n \mid n \in N\})) \in Z(X)^{\#}$. Hence X is a basically disconnected space if and only if $Z(X)^{\#}$ is a σ - complete Boolean algebra.

Lemma 2.2. Let $f : X \to Y$ be a covering map and (A_n) a decreasing sequence of closed sets in X. Then $f(\cap \{A_n \mid n \in N\}) = \cap \{f(A_n) \mid n \in N\}$

Proof. Clearly, we have $f(\cap \{A_n \mid n \in N\}) \subseteq \cap \{f(A_n) \mid n \in N\}$.

Let $x \in \cap \{f(A_n) \mid n \in N\}$. Since (A_n) is a decreasing sequence of closed sets in X, $\{A_n \cap f^{-1}(x) \mid n \in N\}$ has a family of closed sets in $f^{-1}(x)$ with the finite intersection property. Since $f^{-1}(x)$ is compact, $\cap \{A_n \cap f^{-1}(x) \mid n \in N\} \neq \emptyset$ and so $\cap \{A_n \mid n \in N\} \cap f^{-1}(x) \neq \emptyset$. Note that

$$\emptyset \neq f \big(\cap \{A_n \mid n \in N\} \big) \cap \{x\}$$
$$= f \big(\cap \{A_n \mid n \in N\} \cap f^{-1}(x) \big).$$

Hence $x \in f(\cap \{A_n \mid n \in N\})$ and so $f(\cap \{A_n \mid n \in N\}) \supseteq \cap \{f(A_n) \mid n \in N\}$. Thus we have the result.

A space X is called a *P*-space if every zero-set in X is open in X. The concept of P'-spaces is a generalization of the concept of *P*-spaces ([6]).

Definition 2. A space X is called a P'-space if every zero-set in X is a regular closed sets in X, equivalently, for any non-empty zero set Z in X, $int_X(Z) = \emptyset$.

A space X is called a weakly Lindelöf space if every open cover \mathcal{U} of X has a countable subset \mathcal{V} of \mathcal{U} such that $\cup \{V \mid V \in \mathcal{V}\}$ is dence in X.

We recall that a covering map $f : X \to Y$ is called $z^{\#}$ -irreducible if $f(Z(X)^{\#}) = Z(Y)^{\#}$ and that if Y is a weakly Lindelöf space, then $f : X \to Y$ is a $z^{\#}$ -irreducible map.

Definition 3. Let X be a space. Then a pair (Y, f) is called

(1) a cover of X if $f: X \to Y$ is a covering map,

(2) a basically disconnected cover of X if (Y, f) is a cover of X and Y is a basically disconnected space, and

(3) a minimal basically disconnected cover of X if (Y, f) is a basically disconnected cover of X and for any basically disconnected cover (Z, g) of X, there is a covering map $h: Z \to Y$ such that $f \circ h = g$.

Vermeer([7]) showed that every space X has a minimal basically disconnected cover $(\Lambda X, \Lambda_X)$ and that if X is a compact space, then ΛX is the Stone-space $S(\sigma Z(X)^{\#})$ of $\sigma Z(X)^{\#}$ and $\Lambda_X(\alpha) = \cap \{A \mid A \in \alpha\}$ $(\alpha \in \Lambda X)$.

Let X be a space. Since $\sigma Z(X)^{\#}$ and $\sigma Z(\beta X)^{\#}$ are Boolean isomorphic, $S(\sigma Z(X)^{\#})$ and $S(\sigma Z(\beta X)^{\#})$ are homeomorphic.

Let X, Y be spaces and $f: Y \to X$ a map. For any $U \subseteq X$, let $f_U: f^{-1}(U) \to U$ denote the restriction and co-restriction of f with respect to $f^{-1}(U)$ and U, respectively.

For any space X, let $(\Lambda\beta X, \Lambda_{\beta})$ denote the minimal basically disconnected cover of βX .

Lemma 2.3. ([3], [5]) Let X be a space. Then we have the following :

(1) if $\Lambda_{\beta}^{-1}(X)$ is all basically disconnected space, then $(\Lambda_{\beta}^{-1}(X), \Lambda_{\beta_X})$ is the minimal basically disconnected cover of X, and

(2) if $\Lambda_X : \Lambda X \to X$ is $z^{\#}$ -irreducible, then $\Lambda_{\beta}^{-1}(X) = \Lambda X$, $\Lambda_X = \Lambda_{\beta_X}$ and $\beta \Lambda X = \Lambda \beta X$.

Theorem 2.4. Let X be a P'-space such that vX is a weaky Lindelöf space. Then ΛvX is a P'-space.

Proof. Take any zero-set Z in ΛvX such that $\emptyset \neq Z$ and $int_{\Lambda vX}(Z) = \emptyset$. Then there is a continuous function $f : \Lambda vX \to R$ such that $Z = f^{-1}(0)$. For any $n \in N$, let $Z_n = cl_{\Lambda vX}(int_{\Lambda vX}(f^{-1}([0, \frac{1}{n}])))$. Then for any $n \in N$, $Z_{n+1} \subseteq int_{\Lambda vX}(Z_n)$ and (Z_n) is a decreasing sequence in $Z(\Lambda vX)^{\#}$ such that $Z = \cap \{Z_n \mid n \in N\}$. Since Λ_{vX} is a covering map, by Lamma 2.2, $\Lambda_{vX}(Z) = \cap \{\Lambda_{vX}(Z_n) \mid n \in N\}$. Since vX is a weakly Lindelöf space, $\Lambda_{vX} : \Lambda vX \to vX$ is $z^{\#}$ -irreducible and so for any $n \in N$, $\Lambda_{vX}(Z_n) \in Z(vX)^{\#}$.

Let $n \in N$. Then there exists a zero-set A_n in $Z(vX)^{\#}$ such that $\Lambda_{vX}(Z_n) = cl_{vX}(int_{vX}(A_n))$. Since vX is a P'-space, $cl_{vX}(int_{vX}(A_n)) = A_n$ and so $\Lambda_{vX}(Z_n) \in Z(vX)$. Hence $\Lambda_{vX}(Z) = \cap \{\Lambda_{vX}(Z_n) \mid n \in N\} \in Z(vX)$. Since $\Lambda_{vX} : \Lambda vX \to vX$ is $z^{\#}$ -irreducible, by Lamma 2.3, $\Lambda_{vX}^{-1}(vX) = \Lambda vX$ and $\Lambda_{vX} = \Lambda_{\rho_{vX}}$. Note that

$$\begin{split} \Lambda_{vX}(Z \cap \Lambda vX) &= \Lambda_{vX} \left(Z \cap \Lambda_{\beta}^{-1}(vX) \right) \\ &= \Lambda_{\beta} \left(Z \cap \Lambda_{\beta}^{-1}(vX) \right) \\ &= \Lambda_{\beta}(Z) \cap vX. \end{split}$$

Since $int_{\Lambda vX}(Z) = \emptyset$, $\emptyset = \Lambda_{vX}(Z \cap vX) = \Lambda_{vX}(Z) \cap X = \emptyset$. Since vX is a P'-space and $\Lambda_{vX}(Z) \in Z(vX)$, $\Lambda_{vX}(Z) = \emptyset$ and hence $Z = \emptyset$. This is a contradiction and so $int_{\Lambda vX}(Z) \neq \emptyset$. Therefore vX is a P'-space.

It is well-know that a basically disconnected P'-space is a P-space. Using this, we have the following.

Corollary 2.5. Let X be a P'-space such that X or vX has a dense weakly Lindelöf subspace. Then ΛvX is a P'-space.

Proof. Suppose that D is a dense weakly Lindelöf subspace of vX. Let \mathcal{U} be an open cover of vX. Then $\mathcal{U}_D = \{U \cap D \mid U \in \mathcal{U}\}$ is an open cover of D. Since D is a weakly Lindelöf space, there is a countable subset \mathcal{V} of \mathcal{U} such that $\{V \cap D \mid V \in \mathcal{V}\}$ is dense in D. Since D is dense in vX and $\cup\{V \mid V \in \mathcal{V}\}$ is open in vX, $\cup\{V \mid V \in \mathcal{V}\}$ is dense in vX. Hence vX is a weakly Lindelöf space. By Theorem 2.4, ΛvX is a P'-space. \Box Suppose that D is a dense weakly Lindelöf space of X. Then similarly we can show that X is a dense weakly Lindelöf subspace of vX.

Theorem 2.6. ([4]) Let X, Y be spaces such that $\Lambda_{\beta}^{-1}(X) = \Lambda X$ and $\Lambda_{\beta}^{-1}(Y) = \Lambda Y$. If $\Lambda X \times \Lambda Y$ is a basically disconnected space, then $(\Lambda X \times \Lambda Y, \Lambda_X \times \Lambda_Y)$ is the minimal basically disconnected cover of $X \times Y$, where $(\Lambda_X \times \Lambda_Y)(x, y) = (\Lambda_X(x) \times \Lambda_Y(y))$.

A space X is called a countably locally weakly Lindelöf space if for any countable collection $\{\mathcal{U}_n \mid n \in N\}$ of open covers of X and for any $x \in X$, there is a neighborhood G of x in X and for any $n \in N$, there is a subfamily \mathcal{V}_n of \mathcal{U}_n such that $G \subseteq cl_X(\cup \mathcal{V}_n)$.

In [1], it was shown that if X is a P-space and Y is a countably locally weakly Lindelöf space, then $X \times Y$ is a basically disconnected space. By Corollary 2.5 and Theorem 2.6, we have the following corollary :

Corollary 2.7. Let X be a P'-space such that X or vX has a weakly Lindelöf dense subspace and Y a countably locally weakly Lindelöf space. Then $(\Lambda vX \times \Lambda Y, \Lambda_X \times \Lambda_Y)$ is the minimal basically disconnected cover of $X \times Y$.

References

- W.W. Comfort, N. Hindman, and S. Negrepontis, F'-space and their product with Pspaces, Pacific J. Math. 28 (1969). 489-502
- [2] L. Gillman and M. Jerison, *Rings of continuous functions*, Van Nostrand, Princeton, New York, 1960.
- [3] C.I. Kim, Minimal covers and filter spaces, Topology Appl. 72 (1996), 31-37.
- [4] C.I. Kim, Minimal basically disconnected covers of product spaces, Commum. Korean Math. Soc. 21 (2006), 347-353.
- [5] J.R. Porter and R.G. Woods, *Extensions and Absolutes of Hausdorff spaces*, Springer, Berlin, 1988.
- [6] A. I. Veksler, P'-point, P'-sets, P'-spaces, Soviet. Math. Dokl. 14 (1973), 1443-1450.
- [7] J. Vermeer, The smallest basically Disconnected preimage of a space, Topology Appl. 17 (1984), 217-232.

Chang Il Kim

Department of Mathematics Education, Dankook University, 152, Jukjeon, Suji, Yongin, Gyeonggi, 448-701, Korea

E-mail address: kci206@hanmail.net

KAP HUN JUNG

School of Liberal Arts, Seoul National University of Science and Technology, Seoul 139-743, Korea

E-mail address: jkh58@hanmail.net