References
- Bagri, P., Ali, M., Aeri, V., Bhowmik, M. and Sultana, S. (2009) Antidiabetic effect of Punica granatum flowers: effect on hyperlipidemia, pancreatic cells lipid peroxidation and antioxidant enzymes in experimental diabetes. Food Chem. Toxicol. 47, 50-54. https://doi.org/10.1016/j.fct.2008.09.058
- Bhatia, A. L. and Jain, M. (2003) Amaranthus paniculatus (Linn.) improves learning after radiation stress. J. Ethnopharmacol. 85, 73-79. https://doi.org/10.1016/S0378-8741(02)00337-9
- Bhattacharya, S. K., Satyan, K. S. and Chakrabarti, A. (1997) Effect of trasina, an ayurvedic herbal formulation on pancreatic islet superoxide dismutase activity in hyperglycaemic rats. Indian J. Exp. Biol. 35, 297-299.
- Blois, M. S. (1958) Antioxidant determinations by the use of stable free radical. Nature 181, 1199-1200. https://doi.org/10.1038/1811199a0
- Cao, G., Sofic, E. and Prior, R. L. (1997) Antioxidant and prooxidant behaviour of flavonoides: structure-activity relationships. Free Radic. Bio. Med. 22, 749-760. https://doi.org/10.1016/S0891-5849(96)00351-6
- Desai, I. D. (1984) Vitamin E analysis methods for animal tissues. Methods Enzymol. 105, 138-147. https://doi.org/10.1016/S0076-6879(84)05019-9
- Dormandy, T. L. (1980) Free radical reactions in biological systems. Ann. R. Coll. Surg. Engl. 62, 188-194.
- Duncan, B. D. (1957) Multiple range tests for correlated and heteroscedastic means. Biometrics 13, 164-176. https://doi.org/10.2307/2527799
- Ellman, G. C. (1959) Tissue Sulfhydryl groups. Arch. Biochem. Biophys. 82, 70-77. https://doi.org/10.1016/0003-9861(59)90090-6
-
Green, L. C., Wanger, D. A., Glogowski, J., Skipper, P. L., Wishnok, J. S. and Tannenbaum, S. R. (1982) Analysis of nitrate and [
$^{15}N$ ] nitrate in biological fluids. Anal. Biochem. 126, 131-138. https://doi.org/10.1016/0003-2697(82)90118-X - Halliwell, B. and Gutteridge, J. M. (1990) The antioxidants of human extracellular fluids. Arch. Biochem. Biophys. 280, 1-8. https://doi.org/10.1016/0003-9861(90)90510-6
- Ialenti, S., Moncada, M. and Rosa, D. (1993) Modulation of adjuvant arthritis by endogenous nitric oxide. Brit. J. Pharmacol. 110, 701-706. https://doi.org/10.1111/j.1476-5381.1993.tb13868.x
- Jia, J., Zhang, X., Hu, Y. S., Wu, Y., Wang, Q. Z., Li, N. N., Guo, Q. C. and Dong, X. C. (2009) Evaluation of in vivo antioxidant activities of Ganoderma lucidum polysaccharides in STZ-diabetic rats. Food Chem. 115, 32-36. https://doi.org/10.1016/j.foodchem.2008.11.043
- Jiang, Z. Y., Hunt, J. V. and Wolff, S. P. (1992) Ferrous ion oxidation in the presence of Xylenol orange for detection of lipid hydroperoxide in low density lipoprotein. Anal. Biochem. 202, 384-389. https://doi.org/10.1016/0003-2697(92)90122-N
- Kakkar, R., Kalra, J., Mantha, S. V. and Prasad, K. (1995) Lipid peroxidation and activity of antioxidant enzymes in diabetic rats. Mol. Cell. Biochem. 151, 113-119. https://doi.org/10.1007/BF01322333
- Kinalski, M., Sledziewski, A., Telejko, B., Zarzycki, W. and Kinalska, I. (2000) Lipid peroxidation and scavenging enzyme activity in streptozotocin-induced diabtetes. Acta Diabetol. 37, 179-183. https://doi.org/10.1007/s005920070002
- Lee, H. S. (2002) Inhibitary activity of Cinnamomum cassia bark derived component against rat lens aldolase reductase. J. Pharm. Pharm. Sci. 5, 226-230.
- Lee, J. S., Jeon, S. M., Park, E. M., Huk, T. L., Kwon, O. S., Lee, M. K. and Cois, M. S. (2003) Cinnamate supplementation enhances hepatic lipid metabolism and antioxidant defense systems in high cholesterol-fed rats. J. Med. Food 6, 183-191. https://doi.org/10.1089/10966200360716599
- Lowry, O. H., Rosenbrough, N. J., Farr, A. L. and Randall, R. (1951) Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 265-275.
- Maritim, A. C., Sanders, R. A. and Watkins, J. B. (2003) Effects of alpha-lipoic acid on biomarkers of oxidative stress in streptozotocin-induced diabetic rats. J. Nutr. Biochem. 14, 288-94. https://doi.org/10.1016/S0955-2863(03)00036-6
-
Miller, N. J. and Rice-Evans, C. (1997) Factors influencing the antioxidant activity determined by the
$ABTS^{.s}$ radical cation assay. Free Radic. Res. 26, 195-199. https://doi.org/10.3109/10715769709097799 - Misra, H.P. and Fridovich, I. (1972) The role of superoxide anion in the auto oxidation of epinephrine and a simple assay of superoxide dismutase. J. Biol. Chem. 247, 3170-3175.
- Moser, U. and Bendich, A. (1991) Vitamin C. In Handbook of vitamins, 2nd Ed, (Machlin, L. J., Ed), pp195-232. Marcel Dekker, New York.
- Mullarkey, C. J., Edelstein, D. and Brownlee, L. (1990) Free radical generation by early glycation products: a mechanism for accelerated atherogenesis in diabetes. Biochem. Biophys. Res. Commun. 173, 932-939. https://doi.org/10.1016/S0006-291X(05)80875-7
- Nishimiki, M., Rao, N. A. and Yagi, K. (1972) The occurance of superoxide anion in the reaction of reduced phenazine methosulphate and molecular oxygen. Biochem. Biophys. Res. Commun. 46, 849-854. https://doi.org/10.1016/S0006-291X(72)80218-3
- Nogueira, F. N., Carvalho, A. M., Yamaguti, P. M. and Nicolau, J. (2005) Antioxidants parameters and lipid peroxidation in salivary glands of streptozotocin-induced diabetic rats. Clin. Chim. Acta 353, 133-139. https://doi.org/10.1016/j.cccn.2004.11.004
- Omaye, S. T., Turnabull, J. C. and Sanberlick, H. E. (1979) Selected methods for the determination of ascorbic acid in animal cells, tissues and fluids. Methods Enzymol. 62, 3-11. https://doi.org/10.1016/0076-6879(79)62181-X
- Pitozzi, V., Giovannelli, L., Bardini, G., Rotella, C. M. and Dolara, P. (2003) Oxidative DNA damage in peripheral blood cells in type 2 diabetes mellitus: higher vulnerability of polymorphonuclear leukocytes. Mutat. Res. 529, 129-133. https://doi.org/10.1016/S0027-5107(03)00114-3
- Qin, B., Nagasaki, M., Ren, M., Bajotto, G., Oshida, Y. and Sato, Y. (2003) Cinnamon extract (traditional herb) potentiates in vivo insulin regulated glucose utilization via enhancing insulin signaling in rats. Diabetes Res. Clin. Pract. 62, 139-148. https://doi.org/10.1016/S0168-8227(03)00173-6
- Qujeq, D. and Rezvani, T. (2007) Catalase (antioxidant enzyme) activity in streptozotocin- induced diabetic rats. Int. J. Diabetes Metab. 15, 22-24.
- Rajarajeswari, N. and Pari, L. (2011) Antioxidant role of coumarin on streptozotocin-nicotinamide-induced type 2 diabetic rats. J. Biochem. Mol. Toxicol. 25, 355-361. https://doi.org/10.1002/jbt.20395
- Ravi, K., Ramachandran, B. and Subramaniyan, S. (2004) Effect of Eugenia jambolana seed kernel on antioxidant defense system in streptozotocin-induced diabetes in rats. Life Sci. 75, 2717-2731. https://doi.org/10.1016/j.lfs.2004.08.005
- Ravin, H. A. (1961) An improved colorimetric enzymatic assay of ceruloplasmin. J. Lab. Clin. Med. 58, 161-168.
- Ray, G. and Husain, S. A. (2002) Oxidants, antioxidants and carcinogenesis. Indian J. Exp. Biol. 40, 1213-1232.
- Rolo, A. P. and Palmeira, C. M. (2006) Diabetes and mitochondrial function: role of hyperglycemia and oxidative stress. Toxicol. Appl. Pharmacol. 212, 167-178. https://doi.org/10.1016/j.taap.2006.01.003
- Rotruck, J. T., Pope, A. L., Ganther, H. E., Swanson, A. B., Hafeman, D. G. and Hoekstra, W. G. (1973) Selenium; Biochemical role as a component of glutathione peroxidase. Science 179, 588-590. https://doi.org/10.1126/science.179.4073.588
- Sanchez-Moreno, C., Larrauri, J. A. and Saura-Calixto, F. (1999) Free radical scavenging capacity and inhibition of lipid peroxidation of wines, grape juices and related polyphenolic constituents. Food Res. Int. 32, 407-412. https://doi.org/10.1016/S0963-9969(99)00097-6
- Saxena, A. K., Srivastava, P., Kale, R. K. and Baquer, N. Z. (1993) Impaired antioxidant status in diabetic rat liver: effect of vanadate. Biochem. Pharmacol. 45, 539-542.
- Sharma, S. B., Nasir, A., Prabhu, K. M., Murthy, P. S. and Dev, G. (2003) Hypoglycemic and hypolipidemic effect of ethanolic extract of seeds of Eugenia jambolana in alloxan induced diabetic rabbits. J. Ethnopharmacol. 85, 201-206. https://doi.org/10.1016/S0378-8741(02)00366-5
- Simmons, R. A. (2006) Developmental origins of diabetes: the role of oxidative stress. Free Radic. Biol. Med. 40, 917-922. https://doi.org/10.1016/j.freeradbiomed.2005.12.018
- Soto, C., Recoba, R., Barron, H., Alvarez, C. and Favari, L. (2003) Silymarin increases antioxidant enzymes in alloxan induced diabetes in rat pancreas. Comp. Biochem. Physiol. C. Toxicol. Pharmacol. 136, 205-212. https://doi.org/10.1016/S1532-0456(03)00214-X
- Stocker, R. and Frei, B. (1991) Endogenous antioxidant defense in human blood plasma. In Oxidative Stress: Oxidants and antioxidants (H. Sies, Ed), pp213-243. Academic Press, London.
- Subash Babu, P. and Prince, P. S. M. (2004) Antihyperglycemic and antioxidant effect of Hyponidd, an ayurvedic herbomineral formulation in streptozotocin induced diabetic rats. J. Pharm. Pharmacol. 56, 1435-1442. https://doi.org/10.1211/0022357044607
- Subash-Babu, P., Prabuseenivasan, S. and Ignacimuthu, S. (2007) Cinnamaldehyde- A potential antidiabetic agent. Phytomedicine 14, 15-22.
- Subash-Babu, P., Ignacimuthu, S., Agastian, P. and Varghese, B. (2009) Partial regeneration of beta-cells in the islets of Langerhans by Nymphayol a sterol isolated from Nymphaea stellata (Willd.) flowers. Bioorg. Med. Chem. 17, 2864-2870. https://doi.org/10.1016/j.bmc.2009.02.021
- Takahara, S., Hamilton, B. H., Nell, J. V., Kobara, T. Y., Ogura, Y. and Nishimura, E. T. (1960) Hypocatalasemia, a new genetic carrier state. J. Clin. Inv. 39, 610-619. https://doi.org/10.1172/JCI104075
- Wefers, H. and Sies, H. (1988) The protection by ascorbate and glutathione against microsomal lipid peroxidation is dependent on vitamin E. Eur. J. Biochem. 174, 353-357. https://doi.org/10.1111/j.1432-1033.1988.tb14105.x
- World Health Organization. (2008) Prevalence data of diabetes worldwide. Available at http://www.who.int/ media centre/fact sheets/fs312/en/index.html, Accessed 24.04.2008.
- Yagi, K. (1976) A simple fluorometric assay for lipid peroxide in blood plasma. Biochem. Med. 15, 212-216. https://doi.org/10.1016/0006-2944(76)90049-1
- Yokozawa, T., Chen, C. P., Dong, E., Tanaka, T., Nonaka, G. I. and Nishioka, I. (1998) Study on the inhibitory effect of tannins and flavonoids against the 1,1-diphenyl-2-picrylhydrazyl radical. Biochem. Pharmacol. 56, 213-222. https://doi.org/10.1016/S0006-2952(98)00128-2
Cited by
- Cinnamaldehyde in diabetes: A review of pharmacology, pharmacokinetics and safety vol.122, 2017, https://doi.org/10.1016/j.phrs.2017.05.019
- Vitis vinifera(Muscat Variety) Seed Ethanolic Extract Preserves Activity Levels of Enzymes and Histology of the Liver in Adult Male Rats with Diabetes vol.2015, 2015, https://doi.org/10.1155/2015/542026
- Cinnamaldehyde Mitigates Carbon Tetrachloride-induced Acute Liver Injury in Rats Through Inhibition of Toll-like Receptor 4 Signaling Pathway vol.12, pp.8, 2016, https://doi.org/10.3923/ijp.2016.851.862
- Effect of paricalcitol on pancreatic oxidative stress, inflammatory markers, and glycemic status in diabetic rats 2017, https://doi.org/10.1007/s11845-017-1635-7
- Maternal cinnamon extract intake during lactation leads to sex-specific endocrine modifications in rat offspring vol.97, pp.11, 2017, https://doi.org/10.1002/jsfa.8253
- Cinnamaldehyde potentially attenuates gestational hyperglycemia in rats through modulation of PPARγ, proinflammatory cytokines and oxidative stress vol.88, 2017, https://doi.org/10.1016/j.biopha.2017.01.054
- Comparative study of herbal plants on the phenolic and flavonoid content, antioxidant activities and toxicity on cells and zebrafish embryo 2017, https://doi.org/10.1016/j.jtcme.2016.12.006
- Evaluating Pharmacological Effects of Two Major Components of Shuangdan Oral Liquid: Role of Danshensu and Paeonol in Diabetic Nephropathy Rat vol.24, pp.5, 2016, https://doi.org/10.4062/biomolther.2015.191
- Antioxidative and Anti-Inflammatory Activities of Galloyl Derivatives and Antidiabetic Activities of Acer ginnala vol.2017, 2017, https://doi.org/10.1155/2017/6945912
- Changes in pancreatic histology, insulin secretion and oxidative status in diabetic rats following treatment with Ficus deltoidea and vitexin vol.17, pp.1, 2017, https://doi.org/10.1186/s12906-017-1762-8
- In vitro antioxidant activities of resveratrol, cinnamaldehyde and their synergistic effect against cyadox-induced cytotoxicity in rabbit erythrocytes vol.40, pp.2, 2017, https://doi.org/10.1080/01480545.2016.1193866
- Cinnamaldehyde Ameliorates Cadmium-Inhibited Root Elongation in Tobacco Seedlings via Decreasing Endogenous Hydrogen Sulfide Production vol.22, pp.1, 2016, https://doi.org/10.3390/molecules22010015
- Cinnamaldehyde and Nitric Oxide Attenuate Advanced Glycation End Products-Induced the JAK/STAT Signaling in Human Renal Tubular Cells vol.116, pp.6, 2015, https://doi.org/10.1002/jcb.25058
- Anti-oxidative and anti-inflammatory effects of cinnamaldehyde on protecting high glucose-induced damage in cultured dorsal root ganglion neurons of rats vol.22, pp.1, 2016, https://doi.org/10.1007/s11655-015-2103-8
- Effect of Resveratrol, Cinnamaldehyde and their Combinations on the Antioxidant Defense System and ATP Release of Rabbit Erythrocytes: In vitro Study vol.12, pp.1, 2017, https://doi.org/10.3923/ajava.2017.1.9
- Study of the Hypoglycemic Activity of Derivatives of Isoflavones from Cicer arietinum L. vol.2017, 2017, https://doi.org/10.1155/2017/8746823
- Cinnamaldehyde ameliorates STZ-induced rat diabetes through modulation of IRS1/PI3K/AKT2 pathway and AGEs/RAGE interaction pp.1432-1912, 2019, https://doi.org/10.1007/s00210-018-1583-4
- -induced skeletal muscle atrophy by ameliorating the proteolytic and antioxidant defense systems pp.00219541, 2018, https://doi.org/10.1002/jcp.27348
- Cinnamaldehyde exerts vasculoprotective effects in hypercholestrolemic rabbits vol.391, pp.11, 2018, https://doi.org/10.1007/s00210-018-1547-8
- Spice-Derived Bioactive Ingredients: Potential Agents or Food Adjuvant in the Management of Diabetes Mellitus vol.9, pp.1663-9812, 2018, https://doi.org/10.3389/fphar.2018.00893
- Jiao-Tai-Wan Improves Cognitive Dysfunctions through Cholinergic Pathway in Scopolamine-Treated Mice vol.2018, pp.2314-6141, 2018, https://doi.org/10.1155/2018/3538763
- The effects of cinnamaldehyde on acute or chronic stress-induced anxiety-related behavior and locomotion in male mice pp.1607-8888, 2019, https://doi.org/10.1080/10253890.2019.1567710
- Biological Properties of Some Volatile Phenylpropanoids vol.11, pp.10, 2014, https://doi.org/10.1177/1934578x1601101041
- The effects of Alhagi maurorum on the liver properties and histological changes in diabetic rats vol.177, pp.12, 2014, https://doi.org/10.23736/s0393-3660.17.03626-9
- Cinnamaldehyde protects from methylglyoxal‐induced vascular damage: Effect on nitric oxide and advanced glycation end products vol.43, pp.7, 2014, https://doi.org/10.1111/jfbc.12907
- Toxicokinetics and Biliary Excretion of N-Nitrosodiethylamine in Rat Supplemented with Low and High Dietary Proteins vol.16, pp.5, 2014, https://doi.org/10.1080/19390211.2018.1471561
- Encapsulation of cinnamon oil in whey protein counteracts the disturbances in biochemical parameters, gene expression, and histological picture of the liver and pancreas of diabetic rats vol.27, pp.3, 2014, https://doi.org/10.1007/s11356-019-07164-w
- A novel low-molecular-mass pumpkin polysaccharide: Structural characterization, antioxidant activity, and hypoglycemic potential vol.251, pp.None, 2014, https://doi.org/10.1016/j.carbpol.2020.117090
- Exploring the Molecular Mechanism of Action of Yinchen Wuling Powder for the Treatment of Hyperlipidemia, Using Network Pharmacology, Molecular Docking, and Molecular Dynamics Simulation vol.2021, pp.None, 2014, https://doi.org/10.1155/2021/9965906
- Optimization of ohmic heating assisted hydrodistillation of cinnamon and bay leaf essential oil vol.44, pp.3, 2014, https://doi.org/10.1111/jfpe.13635
- Nanostructured Oxide-Based Systems for the pH-Triggered Release of Cinnamaldehyde vol.14, pp.6, 2021, https://doi.org/10.3390/ma14061536
- Comparative effects of metformin and glibenclamide on the redox balance in type 2 diabetic patients vol.68, pp.2, 2021, https://doi.org/10.3897/pharmacia.68.e63365
- Potent anti‐mycobacterial and immunomodulatory activity of some bioactive molecules of Indian ethnomedicinal plants that have the potential to enter in TB management vol.131, pp.4, 2014, https://doi.org/10.1111/jam.15088
- Botanical Interventions to Improve Glucose Control and Options for Diabetes Therapy vol.3, pp.12, 2014, https://doi.org/10.1007/s42399-021-01034-8