DOI QR코드

DOI QR Code

Microalgal Oil Recovery by Solvent Extraction from Nannochloropsis oceanica

Nannochloropsis oceanica로부터 용매추출법을 이용한 미세조류 오일 회수

  • 박지연 (한국에너지기술연구원 청정연료연구단) ;
  • 이계안 ((주)엔엘피) ;
  • 김근용 ((주)엔엘피) ;
  • 김기용 ((주)엔엘피) ;
  • 최선아 (한국에너지기술연구원 청정연료연구단) ;
  • 정민지 (한국에너지기술연구원 청정연료연구단) ;
  • 오유관 (한국에너지기술연구원 청정연료연구단)
  • Received : 2013.08.30
  • Accepted : 2013.10.22
  • Published : 2014.02.01

Abstract

In this study, oil as a source of biodiesel from Nannochloropsis oceanica was extracted using organic solvent. The oil extraction yield and efficiency from dry and wet microalgae were investigated. The initial fatty acids content of the N. oceanica was 317.8 mg/g cell showing a high oil content over 30%. The yield from dry microalgae was higher than that from wet microalgae due to the inhibition of water. The yield by chloroform-methanol was the highest and the yield by hexane was the lowest. However, the total fatty acids contents with the chloroform-methanol were 678.7 and 778.2 mg/g oil under dry and wet conditions, respectively. The high oil extraction yield by chloroform-methanol reflected the fact that the extracted oil contained a high level of impurity. The hexane-methanol extraction from dry N. oceanica showed high oil extraction efficiency, 82.6%. The chloroform-methanol extraction under wet condition also showed high efficiency, 88.0%. While the hexane-methanol extraction from dry microalgae is desirable under low drying cost, the chloroform-methanol extraction from wet microalgae is desirable under high drying cost.

본 연구에서는 Nannochloropsis oceanica로부터 바이오디젤 원료유로 활용하기 위한 미세조류 오일을 추출하였다. 용매추출법을 이용하여 오일을 추출하였으며, 미세조류의 건식 및 습식 조건에서 오일 추출률(yield) 및 오일 추출 효율(efficiency)을 비교하였다. N. oceanica는 지방산 함량이 317.8 mg/g cell으로 건조중량 대비 30% 이상의 높은 오일함량을 나타내었으며, 미세조류의 건식 조건에서 습식 조건보다 높은 오일 추출률을 나타내었다. 사용된 용매에 대해서 헥산 < 헥산-메탄올 < 클로로포름-메탄올 순으로 오일 추출률이 증가하였다. 그러나 추출된 오일의 지방산 함량을 분석한 결과, 오일 추출률이 증가할수록 지방산 함량은 감소하여 엽록소와 같은 불순물을 포함하고 있는 것으로 나타났다. 따라서 오일 추출률과 지방산 함량을 고려한 오일 추출 효율은 건식 조건에서 헥산-메탄올 이용 추출에서 82.6%의 가장 높은 효율을 나타내었고, 습식 조건에서는 클로로포름-메탄올 이용 추출에서 88.0%로 가장 높은 효율을 나타내었다. 따라서 경제적으로 미세조류의 건조가 가능한 경우에는 헥산-메탄올을 사용하고, 건조 비용이 높은 경우에는 습식 조건에서 클로로포름-메탄올을 사용한 용매추출법이 바람직하다.

Keywords

References

  1. Chisti, Y., "Biodiesel from Microalgae," Biotechnol. Adv., 25, 294-306(2007). https://doi.org/10.1016/j.biotechadv.2007.02.001
  2. Kim, J. K., Um, B. H. and Kim, T. H., "Bioethanol Production from Micro-algae, Schizocytrium sp., Using Hydrothermal Treatment and Biological Conversion," Korean J. Chem. Eng., 29, 209-214(2012). https://doi.org/10.1007/s11814-011-0169-3
  3. Li, Q., Du, W. and Liu, D., "Perspectives of Microbial Oils for Biodiesel Production," Appl. Microbiol. Biotechnol., 80, 749-756 (2008). https://doi.org/10.1007/s00253-008-1625-9
  4. Yoo, S. J., Oh, S. K. and Lee, J. M., "Sensitivity Analysis with Optimal Input Design and Model Perdictive Control for Microalgal Bioreactor Systems," Korean Chem. Eng. Res.(HWAHAK KONGHAK), 51, 87-92(2013). https://doi.org/10.9713/kcer.2013.51.1.87
  5. Schenk, P. M., Thomas-Hall, S. R., Stephens, E., Marx, U. C., Mussgnug, J. H., Posten, C., Kruse, O. and Kankamer, B., "Second Generation Biofuels: High Efficiency Microalgae for Biodiesel Production," Bioenerg. Res., 1, 20-43(2008). https://doi.org/10.1007/s12155-008-9008-8
  6. Demirbas, A., "Production of Biodiesel from Algae Oils," Energ. Source, A31, 163-168(2009).
  7. Xu, H., Miao, X. and Wu, Q., "High Quality Biodiesel Production from a Microalga Chlorella Protothecoides by Heterotrophic Growth in Fermenters," J. Biotechnol., 126, 499-507(2006). https://doi.org/10.1016/j.jbiotec.2006.05.002
  8. Halim, R., Danquah, M. K. and Webley, P. A., "Extraction of Oil from Microalgae of Biodiesel Production: A Review," Biotechnol. Adv., 30, 709-732(2012). https://doi.org/10.1016/j.biotechadv.2012.01.001
  9. Lee, Y. C., Huh, Y. S., Farooq, W., Chung, J., Han, J. I., Shin, H. J., Jeong, S. H., Lee, J. S., Oh, Y. K. and Park, J. Y., "Lipid Extractions from Docosahexaenoic Acid (DHA)-rich and Oleaginous Chlorella sp. Biomasses by Organic-nanoclays," Bioresour. Technol., 137, 74-81(2013). https://doi.org/10.1016/j.biortech.2013.03.090
  10. Shin, H. J., Park, J. H., Jung, W. K., Cho, H. and Kim, S. W., "Development of Biorefinery Process Using Microalgae," J. Korean Soc. Precis. Eng., 28, 154-167(2011).
  11. Lee, Y. C., Huh, Y. S., Farooq, W., Han, J. I., Oh, Y. K. and Park, J. Y., "Oil Extraction by Aminoparticle-based H2O2 Activation via Wet Microalgae Harvesting," RSC Adv., 3, 12802-12809(2013). https://doi.org/10.1039/c3ra23266b
  12. Biller, P., Friedman, C. and Ross, A. B., "Hydrothermal Microwave Processing of Microalgae as a Pre-treatment and Extraction Technique for Bio-fuels and Bio-products," Bioresour. Technol., 136, 188-195(2013). https://doi.org/10.1016/j.biortech.2013.02.088
  13. Cho, H. S., Oh, Y. K., Park, S. C., Lee, J. W. and Park, J. Y., "Effects of Enzymatic Hydrolysis on Lipid Extraction from Chlorella Vulgaris," Renew. Energ., 54, 156-160(2013). https://doi.org/10.1016/j.renene.2012.08.031
  14. Lepage, G. and Roy, C. C., "Improved Recovery of Fatty Acid Through Direct Transesterification Without Prior Extraction or Purification," J. Lipid Res., 25, 1391-1396(1984).
  15. AOCS Officical Method cd 3d-63, "Acid Value," Officical Method and Recommended practices of the AOCS, Fifth Edn. AOCS. Champaign, Illinois(2003).
  16. Gustone, F. D., "Fatty Acid and Lipid Chemistry," Chapman & Hall, UK, 207(1996).
  17. CEN, EN 14103, "Fat and oil derivatives - Fatty acid methyl esters (FAME) - Determination of ester and linoleic acid methyl ester contents," (2001).
  18. Farooq, W., Lee, Y. C., Ryu, B. G., Kim, B. H., Kim, H. S., Choi, Y. E. and Yang, J. Y., "Two-stage Cultivation of two Chlorella sp. Strains by Simultaneous Treatment of Brewery Wastewater and Maximizing Lipid Productivity," Bioresour. Technol., 132, 230-238(2013). https://doi.org/10.1016/j.biortech.2013.01.034
  19. Ferraz, T. P. L., Fiuza, M. C., Santos, M. L. A., Carvalho, L. P. and Soares, N. M., "Comparison of Six Methods for the Extraction of Lipids from Serum in Thems of Effectiveness and Protein Preservation," J. Biochem. Biophys. Methods, 58, 187-193 (2004). https://doi.org/10.1016/j.jbbm.2003.10.008

Cited by

  1. nanoparticles vol.18, pp.14, 2016, https://doi.org/10.1039/C6GC00904B
  2. Optimization of Alkail Extraction for Production of Protein Concentrates from Lipid Extracted Algae vol.32, pp.4, 2017, https://doi.org/10.7841/ksbbj.2017.32.4.286
  3. 미세액적 광생물반응기를 활용한 광독립영양배양에서 Chlamydomonas reinhardtii의 성장성 분석 vol.55, pp.1, 2014, https://doi.org/10.9713/kcer.2017.55.1.80
  4. 탈지미세조류로부터 초음파추출을 이용한 항산화 물질 생산 공정 최적화 vol.55, pp.4, 2014, https://doi.org/10.9713/kcer.2017.55.4.542
  5. 탈지미세조류의 무효소 당화를 위한 마이크로파 전처리 조건 최적화 vol.56, pp.2, 2014, https://doi.org/10.9713/kcer.2018.56.2.229
  6. Biotechnological Potential of Korean Marine Microalgal Strains and Its Future Prospectives vol.41, pp.4, 2014, https://doi.org/10.4217/opr.2019.41.4.289