DOI QR코드

DOI QR Code

연속식 2단 기포 유동층 공정의 운전특성

Operating Characteristics of a Continuous Two-Stage Bubbling Fluidized-Bed Process

  • 투고 : 2013.11.25
  • 심사 : 2013.12.23
  • 발행 : 2014.02.01

초록

고체가 연속적으로 주입되고 배출되는 상온 상압 2단 기포 유동층(내경 0.1 m, 높이1.2 m)의 흐름특성을 조사하고, 운전유속범위를 고찰하였다. 고체는 상부 기포 유동층으로 주입되고, 넘쳐서 기계적 혹은 비기계적 밸브가 없이 단순히 농후상 고체 층으로 이루어진 고체 수송관(standpipe, 내경 0.025 m)를 통하여 하부 기포 유동층의 층으로 주입되며, 하부 유동층을 넘쳐서 고체가 배출되었다. 기체는 하부 유동층을 유동화하고 배출된 후 다시 상부 유동층을 유동화하였다. 기체로는 공기를 사용하였고, 고체로는 입도가 큰 입자(< $1000{\mu}m$, 겉보기 밀도 $3090kg/m^3$)와 입도가 작은 입자(< $100{\mu}m$, 겉보기 밀도 $4400kg/m^3$)를 혼합한 입자를 사용하였으며, 혼합비를 변수로 하였다. 하부 유동층 기체가 고체수송관의 고체흐름을 비우고, 우회하는 조건일 때 하부 유동층 유동화 속도를 붕괴속도로 정의하였다. 본 공정의 운전이 가능한 최대기체유속으로 붕괴속도가 사용될 수 있었다. 붕괴속도는 작은 입자 혼합비가 증가함에 따라 증가하여, 30%에서 가장 큰 값을 나타낸 후, 감소하였다. 붕괴속도의 경향은 고체수송관 상단과 하단 사이의 압력차 경향과 유사하였다. 붕괴속도는 벌크밀도(bulk density)와 정체층 공극률의 함수로 나타내졌으며, 벌크밀도가 증가하면 증가하고, 정체층 공극률이 증가하면 감소하였다.

Flow characteristics and the operating range of gas velocity was investigated for a two-stage bubbling fluidized-bed (0.1 m-i.d., 1.2 m-high) that had continuous solids feed and discharge. Solids were fed in to the upper fluidized-bed and overflowed into the bed section of the lower fluidized-bed through a standpipe (0.025 m-i.d.). The standpipe was simply a dense solids bed with no mechanical or non-mechanical valves. The solids overflowed the lower bed for discharge. The fluidizing gas was fed to the lower fluidized-bed and the exit gas was also used to fluidize the upper bed. Air was used as fluidizing gas and mixture of coarse (< $1000{\mu}m$ in diameter and $3090kg/m^3$ in apparent density) and fine (< $100{\mu}m$ in diameter and $4400kg/m^3$ in apparent density) particles were used as bed materials. The proportion of fine particles was employed as the experimental variable. The gas velocity of the lower fluidized-bed was defined as collapse velocity in the condition that the standpipe was emptied by upflow gas bypassing from the lower fluidized-bed. It could be used as the maximum operating velocity of the present process. The collapse velocity decreased after an initial increase as the proportion of fine particles increased. The maximum took place at the proportion of fine particles 30%. The trend of the collapse velocity was similar with that of standpipe pressure drop. The collapse velocity was expressed as a function of bulk density of particles and voidage of static bed. It increased with an increase of bulk density, however, decreased with an increase of voidage of static bed.

키워드

참고문헌

  1. Kunii, D. and Levenspiel, O., Fluidization Engineering, 2nd ed., Butterworth-Heinemann, Boston, USA (1991).
  2. Yi, C.-K., Jo, S.-H. and Seo, Y., "The Effect of Voidage on the $CO_2$ Sorption Capacity of K-based Sorbent in a Dual Circulating Fluidized Bed Process," J. Chem. Eng. Japan, 41(7), 691-694(2008). https://doi.org/10.1252/jcej.07WE064
  3. Choi, J.-H., Youn, P. S., Kim, K.-C., Yi, C.-K., Jo, S.-H., Ryu, H.-J. and Park, Y.-C., "A Model on a Bubbling Fluidized Bed Process for $CO_2$ Capture from Flue Gas," Korean Chem. Eng. Res.(HWAHAK KONGHAK), 50(3), 516-521(2012). https://doi.org/10.9713/kcer.2012.50.3.516
  4. Brahimi, D., Choi, J.-H., Youn, P. S., Jeon, Y. W., Kim, S. D. and Ryu, H.-J., "Simulation on Operating Conditions of Chemical Looping Combustion of Methane in a Continuous Bubbling Fluidized- Bed Process," Energy Fuels, 26(2), 1441-1448(2012). https://doi.org/10.1021/ef2015233
  5. Choi, J.-H., Youn, P. S., Brahimi, D., Jeon, Y. W., Kim, S. D. and Ryu, H.-J., "A Model on Chemical Looping Combustion of Methane in a Bubbling Fluidized Bed," Korean J. Chem. Eng., 29(6), 737-742(2012). https://doi.org/10.1007/s11814-011-0238-7
  6. Knowlton, T. M., Grace, J. R., Avidan, A. A. and Knowlton, T. M. (Ed.), Circulating Fluidized Beds, Blackie Academic and Professional, Chaper 7, 214-260(1997).
  7. Campbell, D. L., Martine, H. Z. and Tyson, C. W., "Method of Contacting Solids and Gases," U.S. Patent No. 2,451,803(1948).
  8. Bachovchin, D. M., Mulik, P. R., Newby, R. A. and Keairns D. L., "Pulsed Transport of Bulk Solids between Adjacent Fluidized Beds," Ind. Eng. Chem. Process Des. Dev., 20(1), 19-26(1981). https://doi.org/10.1021/i200012a003
  9. Zenz, F. A., "Maintaining Dense-Phase Standpipe Downflow," Powder Technol., 47(2), 105-113(1986). https://doi.org/10.1016/0032-5910(86)80106-1
  10. O'Dea, D. P., Rudolph, V. and Chong, Y. O., "Gas-Solids Flow through the Bottom Restriction of an Inclined Standpipe," Powder Technol., 62(3), 291-297(1990). https://doi.org/10.1016/0032-5910(90)80116-G
  11. Takeshita, T., Atumi, K. and Uchida, S., "Effect of Aeration Rate on Flow Rate of Granular Materials from a Hopper Attaching a Standpipe," Powder Technol., 71(1), 65-69(1992). https://doi.org/10.1016/0032-5910(92)88005-3
  12. Jing, S., Hu, Q., Wang, J. and Jin, Y., "Experimental Study on the Hung-up Regime of a Hopper-Standpipe System for a Geldart-D Powder," Chem. Eng. Process.: Process Intensification, 42(5), 337-350(2003). https://doi.org/10.1016/S0255-2701(02)00139-3
  13. Geldart, D., "Types of Gas Fluidization," Powder Technol., 7(5), 285-292(1973). https://doi.org/10.1016/0032-5910(73)80037-3

피인용 문헌

  1. Effects of angle on the transport velocity in an inclined fluidized-bed vol.32, pp.12, 2015, https://doi.org/10.1007/s11814-015-0157-0
  2. Properties of an inclined standpipe for feeding solids into a bubbling fluidized-bed vol.34, pp.9, 2017, https://doi.org/10.1007/s11814-017-0146-6