DOI QR코드

DOI QR Code

ORIGIN-SYMMETRIC CONVEX BODIES WITH MINIMAL MAHLER VOLUME IN ℝ2

  • Lin, Youjiang (School of Mathematical Sciences Peking University, Department of Mathematics Shanghai University) ;
  • Leng, Gangsong (School of Mathematical Sciences Peking University)
  • Received : 2012.11.22
  • Published : 2014.01.31

Abstract

In this paper, a new proof of the following result is given: The product of the volumes of an origin-symmetric convex bodies K in $\mathbb{R}^2$ and of its polar body is minimal if and only if K is a parallelogram.

Keywords

References

  1. J. Bourgain and V. D. Milman, New volume ratio properties for convex symmetric bodies in ${\mathbb{R}}^n$, Invent. Math. 88 (1987), no. 2, 319-340. https://doi.org/10.1007/BF01388911
  2. S. Campi and P. Gronchi, The $L^p$-Busemann-Petty centroid inequality, Adv. Math. 167 (2002), 128-141. https://doi.org/10.1006/aima.2001.2036
  3. S. Campi and P. Gronchi, Volume inequalities for $L_p$-zonotopes, Mathematika 53 (2006), no. 1, 71-80. https://doi.org/10.1112/S0025579300000036
  4. S. Campi and P. Gronchi, On volume product inequalities for convex sets, Proc. Amer. Math. Soc. 134 (2006), no. 8, 2393-2402. https://doi.org/10.1090/S0002-9939-06-08241-4
  5. Y. Gordon, M. Meyer, and S. Reisner, Zonoids with minimal volume-product - a new proof, Proc. Amer. Math. Soc. 104 (1988), no. 1, 273-276.
  6. G. Kuperberg, A low-technology estimate in convex geometry, Inte${\mathbb{R}}^n$at. Math. Res. Notices 1992 (1992), no. 9, 181-183. https://doi.org/10.1155/S1073792892000205
  7. G. Kuperberg, From the Mahler conjecture to Gauss linking integrals, Geom. Funct. Anal. 18 (2008), no. 3, 870-892. https://doi.org/10.1007/s00039-008-0669-4
  8. K. Mahler, Ein Ubertragungsprinzip fur konvexe Korper, Casopis Pyest. Mat. Fys. 68 (1939), 93-102.
  9. K. Mahler, Ein Minimalproblem fur konvexe Polygone, Mathematica (Zutphen) B. 7 (1939), 118-127.
  10. M. Meyer, Une caracterisation volumique de certains espaces normes de dimension finie, Israel J. Math. 55 (1986), no. 3, 317?-326. https://doi.org/10.1007/BF02765029
  11. S. Reisner, Random polytopes and the volume-product of symmetric convex bodies, Math. Scand. 57 (1985), no. 2, 386-392. https://doi.org/10.7146/math.scand.a-12124
  12. S. Reisner, Zonoids with minimal volume-product, Math. Z. 192 (1986), no. 3, 339-346. https://doi.org/10.1007/BF01164009
  13. S. Reisner, Minimal volume product in Banach spaces with a 1-unconditional basis, J. London Math. Soc. 36 (1987), no. 1, 126-136.
  14. C. A. Rogers and G. C. Shephard, Some extremal problems for convex bodies, Mathe- matika 5 (1958), 93-102.
  15. J. Saint Raymond, Sur le volume des corps convexes symetriques, Initiation Seminar on Analysis: G. Choquet-M. Rogalski-J. Saint-Raymond, 20th Year: 1980/1981, Exp. No. 11, 25 pp., Publ. Math. Univ. Pierre et Marie Curie, 46, Univ. Paris VI, Paris, 1981.
  16. R. Schneider, Convex Bodies: The Brunn-Minkowski Theory, Encyclopedia Math. Appl., vol. 44, Cambridge University Press, Cambridge, 1993.
  17. T. Tao, Structure and Randomness, Pages from year one of a mathematical blog. American Mathematical Society, Providence, RI, 2008.