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ORIGIN-SYMMETRIC CONVEX BODIES WITH MINIMAL

MAHLER VOLUME IN R
2

Youjiang Lin and Gangsong Leng

Abstract. In this paper, a new proof of the following result is given:
The product of the volumes of an origin-symmetric convex bodies K in
R
2 and of its polar body is minimal if and only if K is a parallelogram.

1. Introduction

A well-known problem in the theory of convex sets is to find a lower bound
for the product of volumes P(K) = V (K)V (K∗), which is called the Mahler

volume of K, where K is an n-dimensional origin symmetric convex body and
K∗ is the polar body of K (see definition in Section 2). Is it true that we
always have

P(K) ≥ P(Bn
∞),(1.1)

where Bn
∞ = {x ∈ R

n : |xi| ≤ 1, 1 ≤ i ≤ n}? It was conjectured by K.
Mahler in [8] and K. Mahler himself in [9] proved the conjecture for n = 2 and
S. Reisner in [12] showed that parallelograms are the only minimizers. The
n = 3 case is still open. J. Saint-Raymond in [15], for n > 3, exhibited convex
bodies, different than Bn

∞ and its polar body, for which (1.1) is an equality.
For some particular classes of convex symmetric bodies in R

n, a sharper
estimate for the lower bound of P(K) has been obtained. If K is an affine
image of convex body symmetric with respect to a coordinate hyperplane, J.
Saint-Raymond in [15] proved that P(K) ≥ 4n/n!; the equality case, obtained
for 1 −∞ spaces, is discussed in [10] and [13]. When K is a zonoid (limits of
finite Minkowski sums of line segments), it was proved by S. Reisner in [11],
[12] and [5] that the same inequality holds, with equality if and only if K is an
n-cube.
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Using the theory of cotype (which roughly speaking controls the size of long
random sums in a normed vector space), J. Bourgain and V. D. Milman in [1]
proved that there exists a universal constant c > 0 such that P(K) ≥ cnP(Bn

∞),
which is now known as the reverse Santaló inequality. A slightly weaker “low-
tech” bound of P(K) ≥ (log2 n)

−nP(Bn
2 ), n ≥ 4, was given by G. Kuperberg

in [6], using only elementary methods. The best result currently known is again
by G. Kuperberg in [7], who showed that the lower bound is roughly (π/4)n

times the product-volume of a cube by using some Gauss-type linking integrals
associated to a Minkowski metric in R

2n.
The Mahler conjecture is still open even in the three-dimensional case. Ter-

ence Tao in [17] made an excellent remark about the open question.
In the paper, we give a new proof of Mahler conjecture in R

2.

Theorem 1.1. If K ⊂ R
2 is an origin-symmetric convex body, then

P(K) ≥ 8,

with equality if and only if K is a square or diamond.

Remark 1. In [3], for Lp-zonotopes, Campi and Gronchi considered the two

quantities V (Z1)
V (Zp)

and V (Z1)V (Z∗
p ) and showed that both are minimized when

Z1 is a parallelotope, the second fact gave an interesting new proof of Mahler’s
conjecture in R

2. The technique used by Campi and Gronchi is based on a
method introduced by Rogers and Shephard in [14] and previous results proved
by Campi and Gronchi in [2, 4] (They used the shadow system introduced by
Rogers and Shephard). Our proof is different from the previous proof done by
Campi and Gronchi, we first reduce to the problem to the case when K has an
axis of symmetry D and uses as a parameter the coordinate on D of the point
of K with maximal distance to D.

2. Definitions, notation, and preliminaries

As usual, Sn−1 denotes the unit sphere, Bn the unit ball centered at the
origin, o the origin and ‖ · ‖ the norm in Euclidean n-space R

n. If x, y ∈ R
n,

then 〈x, y〉 is the inner product of x and y.
If K is a set, ∂K is its boundary, int K is its interior, and conv K denotes

its convex hull. Let R
n\K denote the complement of K, i.e., Rn\K = {x ∈

R
n : x /∈ K}. If K is a n-dimensional convex subset of Rn, then V (k) is its

volume Vn(K).
Let Kn denote the set of convex bodies (compact, convex subsets with non-

empty interiors) in R
n. Let Kn

o denote the subset of Kn that contains the origin
in its interior. Let h(K, ·) : Sn−1 → R, denote the support function of K ∈ Kn

o ;
i.e.,

h(K,u) = max{u · x : x ∈ K}, u ∈ Sn−1,(2.1)

and let ρ(K, ·) : Sn−1 → R, denote the radial function of K ∈ Kn
o ; i.e.,

ρ(K,u) = max{λ ≥ 0 : λu ∈ K}, u ∈ Sn−1.(2.2)
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If K ∈ Kn
o , we define the polar body K∗ of K by

K∗ = {x ∈ R
n : x · y ≤ 1 , ∀y ∈ K}.

It is easy to verify that (see p. 44 in [16])

h(K∗, u) =
1

ρ(K,u)
and ρ(K∗, u) =

1

h(K, u)
.(2.3)

3. Main result and its proof

Lemma 3.1. For any origin symmetric convex body K ⊂ R
n, P(K) is linear

invariant, that is, for every linear transformation A : R
n → R

n, we have

P(AK) = P(K).

Proof. For any u ∈ Sn−1, we have

ρ((AK)∗, u) =
1

h(AK, u)
=

1

h(K,Atu)
= ρ(K∗, Atu) = ρ(A−tK∗, u).

Hence, (AK)∗ = A−tK∗, therefore

P(AK) = V (AK)V ((AK)∗) = V (AK)V (A−tK∗)

= |A||A−t|V (K)V (K∗) = V (K)V (K∗) = P(K). �

Lemma 3.2. In R
2, for any origin symmetric convex body K0, there exists a

convex body K, symmetric with respect to X-axis OX and K ∩ OX = [−a, a],
satisfying P(K) = P(K0).

Proof. Since K0 is origin symmetric, any line through origin O cuts the bound-
ary of K0 into two points with parallel support lines to K0. Since P(K0) is
affinely invariant, we can suppose that these parallel support lines are orthog-
onal to X-axis. We define now

K = {(x, y) | (x, |y|) ∈ K0}.
It is clear that K is symmetric with respect to X-axis and V (K) = V (K0),
thus we just need to prove V (K∗) = V (K0

∗).

V (K0
∗) =

1

2

∫

S1

ρ(K0
∗, u)2du

=
1

2

∫

S1

h(K0, u)
−2du

=

∫

S1
+

h(K0, u)
−2du

=

∫

S1
+

h(K,u)−2du

=
1

2

∫

S1

h(K,u)−2du
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=
1

2

∫

S1

ρ(K∗, u)2du

= V (K∗),(3.1)

where S1
+ = S1 ∩ {(x, y) | y ≥ 0}, which completes the proof. �

We define function f(x) = max{y | (x, y) ∈ K}, then f(x) is a concave
non-negative function on [−a, a] and K = {(x, y) | x ∈ [−a, a], |y| ≤ f(x)}.
We have the following theorem.

Lemma 3.3. If K = {(x, y) | x ∈ [−a, a], |y| ≤ f(x)}, where f(x) is a concave

non-negative function on [−a, a], then

K∗ = {(x′, y′) | x′ ∈ [−1

a
,
1

a
], |y′| ≤ f∗(x′)},

where

f∗(x′) = inf{1− xx′

f(x)
| x ∈ [−a, a]}.

Proof. We firstly prove that f∗ is also a concave non-negative function on
[− 1

a
, 1
a
]. Because that f(x) ≥ 0 and 1 − xx′ ≥ 0, thus f∗(x′) ≥ 0 for any

x′ ∈ [− 1
a
, 1
a
]. By the definition of f∗(x′), for any − 1

a
≤ x′

1, x
′
2 ≤ 1

a
and

0 < λ < 1, we have

f∗((1 − λ)x′
1 + λx′

2)

= inf{1− x((1 − λ)x′
1 + λx′

2)

f(x)
| x ∈ [−a, a]}

= inf{ (1− λ)(1 − xx′
1) + λ(1 − xx′

2))

f(x)
| x ∈ [−a, a]}

≥ (1 − λ) inf{1− xx′
1

f(x)
| x ∈ [−a, a]}+ λ inf{1− xx′

2

f(x)
| x ∈ [−a, a]}

= (1 − λ)f∗(x′
1) + λf∗(x′

2),(3.2)

which implies that f∗ is a concave function.
Next, we let

K1 = {(x′, y′) | x′ ∈ [−1

a
,
1

a
], |y′| ≤ f∗(x′)}.

On the one hand, we prove K1 ⊂ K∗, for any (x′, y′) ∈ K1 and (x, y) ∈ K, we
have

xx′ + yy′

≤ xx′ + yf∗(x′)

≤ xx′ + y
1− xx′

f(x)

≤ xx′ + f(x)
1 − xx′

f(x)
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≤ 1,(3.3)

which implies that K1 ⊂ K∗.
On the other hand, we prove K∗ ⊂ K1. Let (x′, y′) ∈ K∗ and −a < x < a,

then (x, 0) ∈ K, we have xx′ ≤ 1 for any −a < x < a, hence − 1
a
≤ x′ ≤ 1

a
.

For any (x, f(x)) ∈ K, we have xx′ + f(x)y′ ≤ 1, then |f(x)y′| ≤ 1− xx′, thus

|y′| ≤ 1−xx′

f(x) , thus |y′| ≤ inf{ 1−xx′

f(x) | x ∈ [a, b]} = f∗(x′), which implies that

K∗ ⊂ K1. �

From the above lemma, we have

P(K) = 4

(
∫ a

−a

f(x)dx

)

·
(

∫ 1
a

− 1
a

f∗(x)dx

)

.(3.4)

Let now t0 ∈ [−a, a], such that f(t0) = M is maximal on [−a, a]; then for any
x′ ∈ [0, 1

a
], since

1− x′x

f(x)
≥ 1− x′t0

f(t0)
(3.5)

for any x ∈ [−a, t0], thus

f∗(x′) = inf{1− x′x

f(x)
| x ∈ [t0, a]},(3.6)

similarly for x′ ∈ [− 1
a
, 0],

f∗(x′) = inf{1− x′x

f(x)
| x ∈ [−a, t0]}.(3.7)

It follows that if we set

F1 = {(x, y) ∈ K | y ≥ 0, x ≥ t0}(3.8)

F2 = {(x, y) ∈ K | y ≥ 0, x ≤ t0}(3.9)

F ∗
1 = {(x, y) ∈ K∗ | y ≥ 0, x ≥ 0}(3.10)

F ∗
2 = {(x, y) ∈ K∗ | y ≥ 0, x ≤ 0}(3.11)

and let ui =
2|Fi|
M

, i = 1, 2, we have

Mu1 ≥ (x− t0)M + f(x)(a − t0) for x ∈ [t0, a](3.12)

Mu2 ≥ (t0 − x)M + f(x)(a+ t0) for x ∈ [−a, t0].(3.13)

Lemma 3.4. Let vi = 2|F ∗
i |M , i = 1, 2. Then we can get the following three

inequalities:

v1(u1 + t0) ≥ 2− t0
a
, v2(u2 − t0) ≥ 2 +

t0
a
;(3.14)

a− t0 ≤ u1 ≤ 2(a− t0), a+ t0 ≤ u2 ≤ 2(a+ t0);(3.15)
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1

a
≤ v1 ≤ 1

a
(2− t0

a
),

1

a
≤ v2 ≤ 1

a
(2 +

t0
a
).(3.16)

Proof. Let

A1 = (x1, y1) = (
1

u1 + t0
,

a− t0
M(u1 + t0)

)

and

A2 = (x2, y2) = (
−1

u2 − t0
,

t0 + a

M(u2 − t0)
),

next, we prove Ai ∈ F ∗
i and 0 ≤ yi ≤ f∗(xi) i = 1, 2. Because 2|F1| > M(a−t0)

and x1 = 1
u1+t0

= M
2|F1|+Mt0

, hence 0 < x1 < 1
a
and y1 > 0. By y1 = a−t0

M(u1+t0)

and f∗(x1) = inf{ 1−xx1

f(x) | x ∈ [t0, a]}, we prove that a−t0
M(u1+t0)

≤ 1−xx1

f(x) for any

x ∈ [t0, a].

a− t0
M(u1 + t0)

≤ 1− xx1

f(x)

⇐⇒ f(x)(a− t0) ≤ (1− xx1)M(u1 + t0)

⇐⇒ f(x)(a− t0) ≤ (1− xx1)M(
2|F1|
M

+ t0)

⇐⇒ f(x)(a− t0) ≤ (1− xx1)(2|F1|+Mt0)

⇐⇒ f(x)(a− t0) ≤ (1− x

u1 + t0
)(2|F1|+Mt0)

⇐⇒ f(x)(a− t0) ≤ (1− x
2|F1|
M

+ t0
)(2|F1|+Mt0)

⇐⇒ f(x)(a− t0) ≤ (1− Mx

2|F1|+Mt0
)(2|F1|+Mt0)

⇐⇒ f(x)(a− t0) ≤ 2|F1|+Mt0 −Mx

⇐⇒ 2|F1| ≥ M(x− t0) + f(x)(a− t0)(3.17)

which is (3.12), hence y1 ≤ f∗(x1), hence A1 ∈ F ∗
1 . Similarly, we can get

A2 ∈ F ∗
2 .

According to Figure 3, we can get 2|F ∗
1 | ≥ x1f

∗(0) + f∗(x1)
1
a
, and because

f∗(0) = 1
M

and y1 ≤ f∗(x1), hence

v1
M

≥ x1

M
+

y1
a
.(3.18)

Similarly, we can get

v2
M

≥ −x2

M
+

y2
a
.(3.19)

The above two inequalities are equivalent to (3.14).
From Figure 2, we can get (3.15) easily.
Next, we prove (3.16). Because

f∗(x) = inf{1− xt

f(t)
| t ∈ [−a, a]} ≤ 1− xt0

M
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=⇒
∫ 1

a

0

f∗(x) ≤
∫ 1

a

0

1− xt0
M

dx

=⇒ |F1| ≤
1

2M
· 1
a
(2 − t0

a
)(3.20)

and |F1| ≥ 1
2

1
M

1
a
, hence

1

a
≤ v1 ≤ 1

a
(2− t0

a
).

Similarly,
∫ 0

− 1
a

f∗(x) ≤
∫ 0

− 1
a

1− xt0
M

dx

=⇒ |F2| ≤
1

2M
· 1
a
(2 +

t0
a
)(3.21)

and |F2| ≥ 1
2

1
M

1
a
, hence

1

a
≤ v1 ≤ 1

a
(2 +

t0
a
).

We have proved (3.16). �

Theorem 3.5. If K0 ⊂ R
2 is an origin-symmetric convex body, then

P(K) ≥ 8,

with equality if and only if K is a square or diamond.

Proof. Let K ⊂ R
2 be a convex body symmetric with respect to X-axis OX

and K ∩ OX = [−a, a] and P(K) = P(K0). By (3.4), (3.14) and let q = v2
v1
,

we have

P(K) = (u1 + u2)(v1 + v2)

= u1v1 + u1v2 + u2v1 + u2v2

≥ (2− t0
a

− v1t0) + u1v2 + u2v1 + (2 +
t0
a

+ v2t0)

= 4− v1t0 + u1v2 + u2v1 + v2t0

= 4 +
v2
v1

(u1v1 + v1t0) +
v1
v2

(u2v2 − v2t0)

≥ 4 + q(2− t0
a
) +

1

q
(2 +

t0
a
)

= 4 +
1

a
(
1

q
− q)t0 + 2(q +

1

q
).(3.22)

If v2 > v1, then q > 1 and 1
q
− q < 0, then

P(K) ≥ 4 +
1

a
(
1

q
− q)a+ 2(q +

1

q
) = 4 + q +

3

q
≥ 4 + 2

√
3,(3.23)

and it follows from (3.16) that

1 < q =
v2
v1

≤ 2 +
t0
a

≤ 3.(3.24)
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If v2 < v1, then q < 1 and 1
q
− q > 0, then

P(K) ≥ 4 +
1

a
(
1

q
− q)(−a) + 2(q +

1

q
) = 4 + 3q +

1

q
≥ 4 + 2

√
3,(3.25)

and it follows from (3.16) that

1 > q =
v2
v1

≥ 1

2− t0
a

≥ 1

3
.(3.26)

If v2 = v1, we have

P(K) ≥ 4 + 2(q +
1

q
) ≥ 8.(3.27)

In the following, we prove the case of equality in (3.12). If K is a square
or a diamond, it is clear that the equality holds. On the other hand, if the
equality holds, then equalities in (3.14) hold, which implies that K is a square
or a diamond. �
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[10] M. Meyer, Une caractérisation volumique de certains espaces normés de dimension

finie, Israel J. Math. 55 (1986), no. 3, 317?-326.
[11] S. Reisner, Random polytopes and the volume-product of symmetric convex bodies, Math.

Scand. 57 (1985), no. 2, 386–392.
[12] , Zonoids with minimal volume-product, Math. Z. 192 (1986), no. 3, 339–346.
[13] , Minimal volume product in Banach spaces with a 1-unconditional basis, J.

London Math. Soc. 36 (1987), no. 1, 126–136.
[14] C. A. Rogers and G. C. Shephard, Some extremal problems for convex bodies, Mathe-

matika 5 (1958), 93–102.
[15] J. Saint Raymond, Sur le volume des corps convexes symétriques, Initiation Seminar on

Analysis: G. Choquet-M. Rogalski-J. Saint-Raymond, 20th Year: 1980/1981, Exp. No.
11, 25 pp., Publ. Math. Univ. Pierre et Marie Curie, 46, Univ. Paris VI, Paris, 1981.

[16] R. Schneider, Convex Bodies: The Brunn-Minkowski Theory, Encyclopedia Math. Appl.,
vol. 44, Cambridge University Press, Cambridge, 1993.



ORIGIN-SYMMETRIC CONVEX BODIES 137

[17] T. Tao, Structure and Randomness, Pages from year one of a mathematical blog. Amer-
ican Mathematical Society, Providence, RI, 2008.

Youjiang Lin

School of Mathematical Sciences

Peking University

Beijing, 100871, P. R. China

and

Department of Mathematics

Department of Mathematics

Shanghai University

Shanghai, 200444, P. R. China

E-mail address: lxyoujiang@126.com

Gangsong Leng

Department of Mathematics

Shanghai University

Shanghai, 200444, P. R. China

E-mail address: gleng@staff.shu.edu.cn


