References
- R. P. Agarwal, M. B. Ghaemi, and S. Saiedinezhad, The Nehari manifold for the degenerate p-Laplacian quasilinear elliptic equations, Adv. Math. Sci. Appl. 20 (2010), no. 1, 37-50.
- C. O. Alves and A. El Hamidi, Nehari manifold and existence of positive solutions to a class of quasilinear problems, Nonlinear Anal. 60 (2005), no. 4, 611-624. https://doi.org/10.1016/j.na.2004.09.039
- A. Anane, Simplicite et isolation de la premiere valeur propre du p-Laplacien avec poids, C. R. Acad. Sci. Paris Ser. I Math. 305 (1987), no. 16, 725-728.
- A. Anane and J.-P. Gossez, Strongly nonlinear elliptic problems near resonance: a variational approach, Comm. Partial Differential Equations 15 (1990), no. 8, 1141-1159. https://doi.org/10.1080/03605309908820717
- G. Barles, Remarks on uniqueness results of the first eigenvalue of the p-Laplacian, Ann. Fac. Sci. Toulouse Math. (5) 9 (1988), no. 1, 65-75. https://doi.org/10.5802/afst.649
-
A. Bechah, K. Chaib, and F. de Thelin, Existence and uniqueness of positive solution for subhomogeneous elliptic problems in
$R^N$ , Rev. Mat. Apl. 21 (2000), no. 1-2, 1-17. - M.-F. Bidaut-Veron and T. Raoux, Proprietes locales des solutions d'un systeme elliptique non lineaire, C. R. Acad. Sci. Paris Ser. I Math. 320 (1995), no. 1, 35-40.
- L. Boccardo and D. Guedes de Figueiredo, Some remarks on a system of quasilinear elliptic equations, Nonlinear Differential Equations Appl. 9 (2002), no. 3, 309-323. https://doi.org/10.1007/s00030-002-8130-0
- J. F. Bonder and J. D. Rossi, Existence results for the p-Laplacian with nonlinear boundary conditions, J. Math. Anal. Appl. 263 (2001), no. 1, 195-223. https://doi.org/10.1006/jmaa.2001.7609
- K. J. Brown, The Nehari manifold for a semilinear elliptic equation involving a sublinear term, Calc. Var. Partial Differential Equations 22 (2005), no. 4, 483-494.
- K. J. Brown and T.-F. Wu, A fibering map approach to a semilinear elliptic boundary value problem, Electron. J. Differential Equations 2007 (2007), no. 69, 1-9.
- K. J. Brown and T.-F. Wu, A semilinear elliptic system involving nonlinear boundary condition and sign-changing weight function, J. Math. Anal. Appl. 337 (2008), no. 2, 1326-1336. https://doi.org/10.1016/j.jmaa.2007.04.064
- J. Chabrowski, On multiple solutions for nonhomogeneous system of elliptic equations, Rev. Mat. Univ. Complut. Madrid 9 (1996), no. 1, 207-234.
- C.-Y. Chen, Y.-C. Kuo, and T.-F.Wu, The Nehari manifold for a Kirchhoff type problem involving sign-changing weight functions, J. Differential Equations 250 (2011), no. 4, 1876-1908. https://doi.org/10.1016/j.jde.2010.11.017
- C.-Y. Chen and T.-F.Wu, The Nehari manifold for indefinite semilinear elliptic systems involving critical exponent, Appl. Math. Comput. 218 (2012), no. 22, 10817-10828. https://doi.org/10.1016/j.amc.2012.04.026
-
M. Chipot, M. Chlebik, M. Fila, and I. Shafrir, Existence of positive solutions of a semilinear elliptic equation in
${\mathbb{R}}^n_+$ with a nonlinear boundary condition, J. Math. Anal. Appl. 223 (1998), no. 2, 429-471. https://doi.org/10.1006/jmaa.1998.5958 - M. Chipot, I. Shafrir, and M. Fila, On the solutions to some elliptic equations with nonlinear Neumann boundary conditions, Adv. Differential Equations 1 (1996), no. 1, 91-110.
- P. Clement, J. Fleckinger, E. Mitidieri, and F. de Thelin, Existence of positive solutions for a nonvariational quasilinear elliptic system, J. Differential Equations 166 (2000), no. 2, 455-477. https://doi.org/10.1006/jdeq.2000.3805
- F. de Thelin, Quelques resultats d'existence et de non-existence pour une EDP elliptique non lineaire, C. R. Acad. Sci. Paris Ser. I Math. 299 (1984), no. 18, 911-914.
- M. A. del Pino and R. F. Manasevich, Global bifurcation from the eigenvalues of the p-Laplacian, J. Differential Equations 92 (1991), no. 2, 226-251. https://doi.org/10.1016/0022-0396(91)90048-E
- J. I. Diaz, Nonlinear Partial Differential Equations and Free Boundaries. Vol. I, Volume 106 of Research Notes in Mathematics, Pitman (Advanced Publishing Program), Boston, MA, 1985.
- E. DiBenedetto, Degenerate Parabolic Equations, Springer-Verlag, New York, 1993.
-
P. Drabek, Nonlinear eigenvalue problem for p-Laplacian in
$R^N$ , Math. Nachr. 173 (1995), 131-139. https://doi.org/10.1002/mana.19951730109 -
P. Drabek and Y. X. Huang, Bifurcation problems for the p-Laplacian in
$R^N$ , Trans. Amer. Math. Soc. 349 (1997), no. 1, 171-188. https://doi.org/10.1090/S0002-9947-97-01788-1 - P. Drabek and S. I. Pohozaev, Positive solutions for the p-Laplacian: application of the fibering method, Proc. Roy. Soc. Edinburgh Sect. A 127 (1997), no. 4, 703-726. https://doi.org/10.1017/S0308210500023787
- J. F. Escobar, Uniqueness theorems on conformal deformation of metrics, Sobolev inequalities, and an eigenvalue estimate, Comm. Pure Appl. Math. 43 (1990), no. 7, 857-883. https://doi.org/10.1002/cpa.3160430703
- P. Felmer, R. F. Manasevich, and F. de Thelin, Existence and uniqueness of positive solutions for certain quasilinear elliptic systems, Comm. Partial Differential Equations 17 (1992), no. 11-12, 2013-2029.
- J. Garcia-Azorero, I. Peral, and J. D. Rossi, A convex-concave problem with a nonlinear boundary condition, J. Differential Equations 198 (2004), no. 1, 91-128. https://doi.org/10.1016/S0022-0396(03)00068-8
-
Y. Li, Asymptotic behavior of positive solutions of equation
${\Delta}u$ +$K(x)u^p$ = 0 in$R^n$ , J. Differential Equations 95 (1992), no. 2, 304-330. https://doi.org/10.1016/0022-0396(92)90034-K -
P. Lindqvist, On the equation div
$(\left|{\nabla}u\right|^{p-2}{\nabla}u)$ +${\lambda}\left|u\right|^{p-2}u$ = 0, Proc. Amer. Math. Soc. 109 (1990), no. 1, 157-164. - Z. Nehari, On a class of nonlinear second-order differential equations, Trans. Amer. Math. Soc. 95 (1960), 101-123. https://doi.org/10.1090/S0002-9947-1960-0111898-8
- Z. Nehari, Characteristic values associated with a class of non-linear second-order differential equations, Acta Math. 105 (1961), 141-175. https://doi.org/10.1007/BF02559588
- W.-M. Ni and J. Serrin, Existence and non-existence theorems for ground states of quasilinear partial differential equations. The anomalous case, Rome, Acc. Naz. dei Lincei, Atti dei Convegni 77 (1986), 231-257.
- M. Otani, On certain second order ordinary differential equations associated with Sobolev-Poincare-type inequalities, Nonlinear Anal. 8 (1984), no. 11, 1255-1270. https://doi.org/10.1016/0362-546X(84)90014-2
- M. Otani, Existence and nonexistence of nontrivial solutions of some nonlinear degenerate elliptic equations, J. Funct. Anal. 76 (1988), no. 1 140-159. https://doi.org/10.1016/0022-1236(88)90053-5
- D. Pierotti and S. Terracini, On a Neumann problem with critical exponent and critical nonlinearity on the boundary, Comm. Partial Differential Equations 20 (1995), no. 7-8, 1155-11875. https://doi.org/10.1080/03605309508821128
- S. H. Rasouli and G. A. Afrouzi, The Nehari manifold for a class of concave-convex elliptic systems involving the p-Laplacian and nonlinear boundary condition, Nonlinear Anal. 73 (2010), no. 10, 3390-3401. https://doi.org/10.1016/j.na.2010.07.021
- G. Tarantello, On nonhomogeneous elliptic equations involving critical Sobolev exponent, Ann. Inst. H. Poincare Anal. Non Lineaire 9 (1992), no. 3, 281-304. https://doi.org/10.1016/S0294-1449(16)30238-4
- P. Tolksdorf, Regularity for a more general class of quasilinear elliptic equations, J. Differential Equations 51 (1984), no. 1, 126-150. https://doi.org/10.1016/0022-0396(84)90105-0
- T.-F. Wu, On semilinear elliptic equations involving concave-convex nonlinearities and sign-changing weight function, J. Math. Anal. Appl. 318 (2006), no. 1, 253-270.
- T.-F. Wu, Multiple positive solutions for semilinear elliptic systems with nonlinear boundary condition, Appl. Math. Comput. 189 (2007), no. 2, 1712-1722. https://doi.org/10.1016/j.amc.2006.12.052
- Z. Wu, J. Zhao, J. Yin, and H. Li, Nonlinear Diffusion Equations, World Scientific Publishing Co. Inc., River Edge, NJ, 2001.