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MULTIPLE SOLUTIONS FOR A p-LAPLACIAN SYSTEM

WITH NONLINEAR BOUNDARY CONDITIONS

Jun Zhou and Chan-Gyun Kim

Abstract. A nonlinear elliptic problem involving p-Laplacian and non-
linear boundary condition is considered in this paper. By using the
method of Nehari manifold, it is proved that the system possesses two
nontrivial nonnegative solutions if the parameter is small enough.

1. Introduction

This paper is devoted to the study of the following quasilinear elliptic prob-
lem with nonlinear boundary conditions:

(1.1)











−∆pu+m(x)|u|p−2u = λFu(u, v), x ∈ Ω,

−∆pv + n(x)|v|p−2v = λFv(u, v), x ∈ Ω,

|∇u|p−2 ∂u
∂ν = Gu(u, v), |∇v|p−2 ∂v

∂ν = Gv(u, v), x ∈ ∂Ω,

where p > 1, Ω ⊂ R
N is a bounded domain with smooth boundary ∂Ω and

• ∆p denotes the p-Laplacian operator, defined by ∆pz = div
(

|∇z|p−2∇z
)

;

• λ ∈ (0,+∞), m(x), n(x) ∈ C(Ω), and there exist positive constants m0

and n0 such that m(x) ≥ m0 and n(x) ≥ n0 for all x ∈ Ω;
• ν is the unit outer normal to ∂Ω;
• F,G : R× R → [0,∞) satisfy:

(H1) F,G ∈ C1(R × R); F (u, v) = F (|u|, |v|) and G(u, v) = G(|u|, |v|);
F (u, v) 6≡ 0 and G(u, v) 6≡ 0;

(H2) There exist constants α ∈ (p, p∗) and β ∈ (1, p) such that

F (tu, tv) = tαF (u, v) and G(tu, tv) = tβG(u, v)

for all t ≥ 0 and (u, v) ∈ R× R.
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Here p∗ denotes the Sobolev conjugate exponent of p, i.e.,

p∗ =







Np

N − p
, p < N,

∞, p ≥ N.

Problem involving the p-Laplacian operator appears in pure mathematics
such as the theory of quasiregular and quasiconformal mapping [26, 39] as well
as in applied mathematics. Indeed, it intervenes in numerous fields in exper-
imental sciences: nonlinear reaction-diffusion problems, dynamics of popula-
tions, non-Newtonian fluids, flows through porous media, nonlinear elasticity,
petroleum extraction, torsional creep problems, etc (see, e.g., [21, 22, 42]). In
literature, there exist numerous papers dedicated to the study of such equations
and systems. In fact, the study of scalar equations had really started in the
middle of 80s by M. Ôtani [34] in one dimension and then in dimension N by
F. de Thélin [19]. Later, the results are generalized to other kinds of equations
or systems involving p-Laplacian in R

N or bounded open set Ω ⊂ R
N (see,

e.g., [1, 3, 4, 5, 6, 7, 8, 13, 18, 20, 23, 24, 27, 29, 30, 33, 35] and the references
therein).

In recent years, the existence of solutions for the semilinear/quasilinear el-
liptic equations with nonlinear boundary conditions have been widely studied
(see, e.g., [9, 12, 16, 17, 28, 36, 37, 41] and the references therein). In particular,
in [37], the authors studied the multiple solutions of the following systems:
(1.2)










−∆pu+m(x)|u|p−2u = λ1a(x)|u|γ−2u, x ∈ Ω,

−∆pv +m(x)|v|p−2v = λ2b(x)|v|γ−2v, x ∈ Ω,

|∇u|p−2 ∂u
∂ν = α

α+β |u|
α−2u|v|β, |∇v|p−2 ∂v

∂ν = β
α+β |u|

α|v|β−2v, x ∈ ∂Ω,

where Ω ⊂ R
N , p > 2, is a bounded domain with smooth boundary ∂Ω,

λ1, λ2 > 0, and 2 < α+ β < p < γ < p∗. Motivated by the results of the above
works, we are interested in the existence of multiple nontrivial nonnegative
solutions for problem (1.1). We remark that problem (1.2) is a special case of
(1.1) with

F (u, v) =
λ1

λγ
a(x)|u|γ +

λ2

λγ
b(x)|v|γ , G(u, v) =

1

α+ β
|u|α|v|β , λ = λ1 + λ2.

The main approach of this paper is the method of Nehari manifold, which
was first introduced by Nehari in [31, 32], and the method turned out to be very
useful in critical point theory (see, e.g., [1, 2, 10, 11, 14, 15, 25, 37, 38, 40, 41])
and eventually came to bear his name.

The rest of this work is organized as follows. In Section 2, we introduce some
preliminaries including definitions and some lemmas for later use. In Section
3, the proof of the main result is given.
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2. Preliminaries

Let W = W 1,p(Ω)×W 1,p(Ω) be a Banach space with norm

‖(u, v)‖ =

(
∫

Ω

(|∇u|p +m(x)|u|p) dx +

∫

Ω

(|∇v|p + n(x)|v|p) dx

)1/p

.

Definition 2.1. We say that (u, v) ∈ W is a solution to (1.1) if for any
(φ, ϕ) ∈ W,
∫

Ω

(

|∇u|p−2∇u · ∇φ+m(x)|u|p−2uφ
)

dx=λ

∫

Ω

Fu(u, v)φdx+

∫

∂Ω

Gu(u, v)φds,

∫

Ω

(

|∇v|p−2∇v · ∇ϕ+ n(x)|v|p−2vϕ
)

dx = λ

∫

Ω

Fv(u, v)ϕdx+

∫

∂Ω

Gv(u, v)ϕds.

Let Jλ : W → R be the corresponding energy functional to problem (1.1)
defined as

Jλ(u, v) =
1

p
‖(u, v)‖p − λ

∫

Ω

F (u, v)dx−

∫

∂Ω

G(u, v)ds, (u, v) ∈ W.

Furthermore the nonnegative solutions of problem (1.1) correspond to the crit-
ical points of J . Define Iλ : W → R as

Iλ(u, v) = ‖(u, v)‖p − λα

∫

Ω

F (u, v)dx− β

∫

∂Ω

G(u, v)ds, (u, v) ∈ W.

It follows from condition (H2) that Fu(u, v)u + Fv(u, v)v = αF (u, v) and
Gu(u, v)u+Gv(u, v)v = βG(u, v) for all u, v ∈ R. Consequently,

Iλ(u, v) = 〈J ′
λ(u, v), (u, v)〉 for all (u, v) ∈ W.

Let us denote the Nehari manifold by Nλ, i.e.,

Nλ = {(u, v) ∈ W \ {(0, 0)} : Iλ(u, v) = 0}.

It is easy to see that (u, v) ∈ Nλ if and only if

(2.1) ‖(u, v)‖p = λα

∫

Ω

F (u, v)dx+ β

∫

∂Ω

G(u, v)ds.

Accordingly, for (u, v) ∈ Nλ,

〈I ′λ(u, v), (u, v)〉 = p‖(u, v)‖p − λα2

∫

Ω

F (u, v)dx− β2

∫

∂Ω

G(u, v)ds

= −(α− p)‖(u, v)‖p + β(α − β)

∫

∂Ω

G(u, v)ds

= (p− β)‖(u, v)‖p − λα(α − β)

∫

Ω

F (u, v)dx.

(2.2)

By (H2), F and G satisfy that, for all u, v ∈ R,

(2.3) F (u, v) ≤ M (|u|p + |v|p)
α
p , G(u, v) ≤ M (|u|p + |v|p)

β

p ,



102 JUN ZHOU AND CHAN-GYUN KIM

where

M := max

{

max
|u|p+|v|p=1

F (u, v), max
|u|p+|v|p=1

G(u, v)

}

> 0.

Since α ∈ (1, p∗) and β ∈ (1, p), it follows from Sobolev and Sobolev trace
inequalities that there exist positive constants C1 and C2 such that
(2.4)

∫

Ω

(|u|p + |v|p)α/p dx ≤ C1‖(u, v)‖
α,

∫

∂Ω

(|u|p + |v|p)β/p ds ≤ C2‖(u, v)‖
β

for all (u, v) ∈ W . By (2.3) and (2.4),

(2.5)

∫

Ω

F (u, v)dx ≤ MC1‖(u, v)‖
α

and

(2.6)

∫

∂Ω

G(u, v)ds ≤ MC2‖(u, v)‖
β

for all (u, v) ∈ W.

Define

λ∗ :=

(

p− β

α(α − β)MC1

)(

α− p

β(α− β)MC2

)

α−p
p−β

and

λ∗ :=

(

p− β

α(α− β)MC1

)(

α− p

p(α− β)MC2

)

α−p
p−β

,

where M is the constant in (2.3) and C1, C2 are the constants in (2.4). Note
that 0 < λ∗ < λ∗.

Now we split Nλ into three parts:

N+
λ = {(u, v) ∈ Nλ : 〈I ′λ(u, v), (u, v)〉 > 0},

N 0
λ = {(u, v) ∈ Nλ : 〈I ′λ(u, v), (u, v)〉 = 0},

N−
λ = {(u, v) ∈ Nλ : 〈I ′λ(u, v), (u, v)〉 < 0},

and present some properties of Nλ.

Lemma 2.2. Suppose that F and G satisfy (H1) and (H2). Then N 0
λ = ∅ for

all λ ∈ (0, λ∗).

Proof. Let λ be a fixed number satisfying N 0
λ 6= ∅. Then for (u, v) ∈ N 0

λ ,

0 = 〈I ′λ(u, v), (u, v)〉 = (p− β)‖(u, v)‖p + λα(β − α)

∫

Ω

F (u, v)dx

= (p− α)‖(u, v)‖p + β(α− β)

∫

∂Ω

G(u, v)ds.

(2.7)

By (2.5), (2.6) and (2.7),
(

p− β

λα(α − β)MC1

)
1

α−p

≤ ‖(u, v)‖ ≤

(

β(α− β)MC2

α− p

)
1

p−β

,
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and consequently

λ ≥

(

p− β

α(α − β)MC1

)(

α− p

β(α− β)MC2

)

α−p
p−β

= λ∗.
�

Lemma 2.3. Suppose that F and G satisfy (H1) and (H2), and λ ∈ (0, λ∗).
Assume that (u0, v0) is a local minimizer for Jλ on Nλ. Then (u0, v0) is a

critical point of Jλ, i.e., J ′
λ(u0, v0) = 0.

Proof. Let (u0, v0) be a local minimizer for Jλ on Nλ and λ ∈ (0, λ∗). Then
(u0, v0) is a solution of the following optimization problem:

minimize Jλ(u, v) = 0 subject to Iλ(u, v) = 0.

Hence, by the theory of Lagrange multipliers, there exists a Λ ∈ R such that

J ′
λ(u0, v0) = ΛI ′λ(u0, v0).

Thus

〈J ′
λ(u0, v0), (u0, v0)〉 = Λ〈I ′λ(u0, v0), (u0, v0)〉.

Since (u0, v0) ∈ Nλ, 〈J ′
λ(u0, v0), (u0, v0)〉 = 0. On the other hand, by Lemma

2.2,

〈I ′λ(u0, v0), (u0, v0)〉 6= 0.

Hence Λ = 0, and this completes the proof. �

Lemma 2.4. Jλ is coercive and bounded below on Nλ for all λ > 0.

Proof. For u ∈ Nλ, it follows from (2.1) and (2.6) that

Jλ(u, v) =
α− p

pα
‖(u, v)‖p −

α− β

α

∫

∂Ω

G(u, v)ds

≥
α− p

pα
‖(u, v)‖p −

α− β

α
MC2‖(u, v)‖

β,

(2.8)

which completes the proof since β < p < α. �

By Lemma 2.2, Nλ = N+
λ ∪ N−

λ for 0 < λ < λ∗, and define

γ+
λ = inf{Jλ(u, v) : (u, v) ∈ N+

λ },

γ−
λ = inf{Jλ(u, v) : (u, v) ∈ N−

λ }.

Lemma 2.5. Suppose that F and G satisfy (H1) and (H2). Then we have

(i) If λ ∈ (0,+∞), then γ+
λ < 0;

(ii) If λ ∈ (0, λ∗), γ
−
λ ≥ d0 for some constant d0 = d0(λ) > 0.

Proof. (i) Let (u, v) ∈ N+
λ and λ ∈ (0,∞). By (2.2),

p− β

α(α− β)
‖(u, v)‖p > λ

∫

Ω

F (u, v)dx,
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and, by (2.1),

Jλ(u, v) =

(

1

p
−

1

β

)

‖(u, v)‖p +

(

α

β
− 1

)

λ

∫

Ω

F (u, v)dx

<

(

1

p
−

1

β
+

p− β

αβ

)

‖(u, v)‖p

=
(p− α)(p − β)

pαβ
‖(u, v)‖p.

Since β < p < α, Jλ(u, v) < 0 for all (u, v) ∈ N+
λ , and thus γ+

λ < 0 for all
λ ∈ (0,∞).

(ii) Let (u, v) ∈ N−
λ and λ ∈ (0, λ∗). By (2.2) and (2.5),

(p− β)‖(u, v)‖p < λα(α − β)

∫

Ω

F (u, v)dx ≤ λα(α − β)MC1‖(u, v)‖
α,

and

(2.9) ‖(u, v)‖ >

(

p− β

λα(α − β)MC1

)
1

α−p

.

By (2.8) and (2.9),

Jλ(u, v)

≥ ‖(u, v)‖β
[

α− p

pα
‖(u, v)‖p−β −

α− β

α
MC2

]

>

(

p− β

λα(α − β)MC1

)

β

α−p

[

(

α− p

pα

)(

p− β

λα(α − β)MC1

)

p−β

α−p

−

(

α− β

α

)

MC2

]

.

Thus, for each λ ∈ (0, λ∗), there exists a positive constant d0 = d0(λ) such that

γ−
λ ≥ d0. �

Lemma 2.6. Suppose that F and G satisfy (H1) and (H2). Let λ ∈ (0, λ∗)
and (u, v) ∈ W . Then we have

(i) If
∫

Ω
F (u, v)dx > 0, there exists a unique t2 = t2(u, v) with

t2 > t∗1 = t∗1(u, v) :=









(p− β)‖(u, v)‖p

λα(α − β)

∫

Ω

F (u, v)dx









1
α−p

> 0

such that (t2u, t2v) ∈ N−
λ and Jλ(t2u, t2v) = supt≥0 Jλ(tu, tv).

(ii) If
∫

∂Ω
G(u, v)ds > 0, there exists a unique t3 = t3(u, v) with

0 < t3 < t∗2 = t∗2(u, v) :=









β(α − β)

∫

∂Ω

G(u, v)ds

(α− p)‖(u, v)‖p









1
p−β
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such that (t3u, t3v) ∈ N+
λ and Jλ(t3u, t3v) = inf0≤t≤t∗

2
Jλ(tu, tv).

Proof. (i) Fix (u, v) ∈ W with
∫

Ω
F (u, v)dx > 0. Then (u, v) 6= (0, 0). Let

a(u,v)(t) = tp−β‖(u, v)‖p − λαtα−β

∫

Ω

F (u, v)dx for t ≥ 0.

Then a(u,v)(0) = 0 and a(u,v)(t) → −∞ as t → +∞. Since

a′(u,v)(t) = (p− β)tp−β−1‖(u, v)‖p − λα(α − β)tα−β−1

∫

Ω

F (u, v)dx,

we see that a′(u,v)(t) = 0 for t = t∗1, a
′
(u,v)(t) > 0 for t ∈ (0, t∗1) and a′(u,v)(t) < 0

for t ∈ (t∗1,+∞). Moreover, by (2.5),

a(u,v)(t
∗
1) = (t∗1)

p−β‖(u, v)‖p
(

α− p

α− β

)

=

(

(p− β)‖(u, v)‖α

λα(α − β)
∫

Ω F (u, v)dx

)

p−β

α−p

‖(u, v)‖β
(

α− p

α− β

)

>

(

p− β

λ∗α(α − β)MC1

)

p−β

α−p
(

α− p

α− β

)

‖(u, v)‖β.

(2.10)

On the other hand, by (2.6),

0 ≤ β

∫

∂Ω

G(u, v)ds

≤ βMC2‖(u, v)‖
β

≤

(

α− p

α− β

)(

p− β

λ∗α(α− β)MC1

)

p−β
α−p

‖(u, v)‖β

and, by (2.10),

β

∫

∂Ω

G(u, v)ds < a(u,v)(t
∗
1).

Hence, there are unique t1 = t1(u, v) and t2 = t2(u, v) such that

0 ≤ t1 < t∗1 < t2, a(u,v)(t1) = a(u,v)(t2) = β

∫

∂Ω

G(u, v)ds and a′(u,v)(t2) < 0.

Clearly (t2u, t2v) 6= (0, 0), and (t2u, t2v) ∈ Nλ since

Iλ(t2u, t2v) = t
p
2‖(u, v)‖

p − λαtα2

∫

Ω

F (u, v)dx− βt
β
2

∫

∂Ω

G(u, v)ds

= t
β
2

(

a(u,v)(t2)− β

∫

∂Ω

G(u, v)ds

)

= 0.

It follows from (2.2) that

〈I ′λ(t2u, t2v), (t2u, t2v)〉 = (p− β)tp2‖(u, v)‖
p − λα(α − β)tα2

∫

Ω

F (u, v)dx

= t
β+1
2 a′(u,v)(t2) < 0.
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Thus (t2u, t2v) ∈ N−
λ . Moreover

d

dt
Jλ(tu, tv) = tp−1‖(u, v)‖p − λαtα−1

∫

Ω

F (u, v)dx− βtβ−1

∫

∂Ω

G(u, v)ds

= tβ−1

(

a(u,v)(t)− β

∫

∂Ω

G(u, v)ds

)

,

which implies that d
dtJλ(tu, tv) = 0 for t = t1 and t = t2;

d
dtJλ(tu, tv) < 0 for

t ∈ (0, t1)∪ (t2,+∞); d
dtJλ(tu, tv) > 0 for t ∈ (t1, t2). From Lemma 2.5(ii) and

Jλ(0, 0) = 0, it follows that

Jλ(t2u, t2v) = sup
t≥0

Jλ(tu, tv).

(ii) Fix (u, v) ∈ W with
∫

∂Ω
G(u, v)ds > 0. Then (u, v) 6= (0, 0). Let

b(u,v)(t) = tp−α‖(u, v)‖p − βtβ−α

∫

∂Ω

G(u, v)ds for t > 0.

Then b(u,v)(t) → −∞ as t → 0+ and b(u,v)(t) → 0 as t → +∞. Since

b′(u,v)(t) = (p− α)tp−α−1‖(u, v)‖p − β(β − α)tβ−α−1

∫

∂Ω

G(u, v)ds,

we see that b′(u,v)(t) = 0 for t = t∗2, b
′
(u,v)(t) > 0 for t ∈ (0, t∗2) and b′(u,v)(t) < 0

for t ∈ (t∗2,+∞). Moreover, by (2.6),

b(u,v)(t
∗
2) = (t∗2)

p−α‖(u, v)‖p
(

p− β

α− β

)

=

(

(α− p)‖(u, v)‖β

β(α − β)
∫

∂Ω G(u, v)ds

)

α−p

p−β

‖(u, v)‖α
(

p− β

α− β

)

≥

(

α− p

β(α − β)MC2

)

α−p

p−β

‖(u, v)‖α
(

p− β

α− β

)

.

(2.11)

On the other hand, by (2.5),

0 ≤ λα

∫

Ω

F (u, v)dx

< λ∗αMC1‖(u, v)‖
α

≤ ‖(u, v)‖α
(

p− β

α− β

)[

α− p

βMC2(α− β)

]

α−p
p−β

,

and, by (2.11),

0 ≤ λα

∫

Ω

F (u, v)dx < b(u,v)(t
∗
2) for 0 < λ < λ∗.

Hence, there is a unique t3 = t3(u, v) ∈ (0, t∗2) such that

b(u,v)(t3) = λα

∫

Ω

F (u, v)dx and b′(u,v)(t3) > 0.
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Clearly (t3u, t3v) 6= (0, 0), and (t3u, t3v) ∈ Nλ since

Iλ(t3u, t3v) = t
p
3‖(u, v)‖

p − λαtα3

∫

Ω

F (u, v)dx− βt
β
3

∫

∂Ω

G(u, v)ds

= tα3

(

b(u,v)(t)− λα

∫

Ω

F (u, v)dx

)

= 0.

It follows from (2.2) that

〈I ′λ(t3u, t3v), (t3u, t3v)〉 = (p− α)tp3‖(u, v)‖
p − β(β − α)tβ3

∫

∂Ω

G(u, v)ds

= tα+1
3 b′(u,v)(t3) > 0.

Thus (t3u, t3v) ∈ N+
λ . Moreover,

d

dt
Jλ(tu, tv) = tp−1‖(u, v)‖p − λαtα−1

∫

Ω

F (u, v)dx− βtβ−1

∫

∂Ω

G(u, v)ds

= tα−1

(

b(u,v)(t)− λα

∫

Ω

F (u, v)dx

)

.

So, d
dtJλ(tu, tv) = 0 for t = t3;

d
dtJλ(tu, tv) < 0 for t ∈ (0, t3);

d
dtJλ(tu, tv) > 0

for t ∈ (t3, t
∗
2). Hence, Jλ(t3u, t3v) = inf0≤t≤t∗

2
Jλ(tu, tv). �

3. Main result

Now we state our main result.

Theorem 3.1. Suppose (H1) and (H2) hold. Then problem (1.1) has at least

two nontrivial nonnegative solutions for λ ∈ (0, λ∗).

The proof of this theorem will be a consequence of the next two propositions.

Proposition 3.2. Suppose (H1) and (H2) hold and λ ∈ (0, λ∗). Then the

functional Jλ has a minimizer (u+
0 , v

+
0 ) in N+

λ , and it satisfies

(i) Jλ(u
+
0 , v

+
0 ) = γ+

λ ;

(ii) (u+
0 , v

+
0 ) is a nontrivial nonnegative solution of problem (1.1).

Proof. By Lemma 2.4, Jλ is coercive and bounded below onNλ. By assumption
(H1) and Lemma 2.6(ii), N+

λ 6= ∅. Let {(un, vn)} be a minimizing sequence for

Jλ on N+
λ , i.e., limn→+∞ Jλ(un, vn) = inf(u,v)∈N+

λ
Jλ(u, v) = γ+

λ < 0. Then,

by Lemma 2.4 and the Rellich-Kondrachov theorem, there exist a subsequence
of {(un, vn)}, denoted by itself, and (u+

0 , v
+
0 ) ∈ W such that

(un, vn) ⇀ (u+
0 , v

+
0 ) weakly in W,

un → u+
0 , vn → v+0 strongly in Lα(Ω) and Lβ(∂Ω), respectively.
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Thus, by (2.3),
∫

Ω

F (un, vn)dx →

∫

Ω

F (u+
0 , v

+
0 )dx as n → +∞,

∫

∂Ω

G(un, vn)ds →

∫

∂Ω

G(u+
0 , v

+
0 )ds as n → +∞.

(3.1)

From the facts that

Jλ(un, vn) =
α− p

αp
‖(un, vn)‖

p −
α− β

α

∫

∂Ω

G(un, vn)ds,

and

Jλ(un, vn) → γ+
λ < 0 as n → +∞,

it follows that
∫

∂Ω

G(u+
0 , v

+
0 )ds > 0.

In particular, (u+
0 , v

+
0 ) 6= (0, 0). Now, we prove that (un, vn) → (u+

0 , v
+
0 )

strongly in W . Suppose otherwise, then

(3.2) ‖(u+
0 , v

+
0 )‖ < lim

n→+∞
‖(un, vn)‖,

and

(3.3) Jλ(u0, v0) < lim
n→∞

Jλ(un, vn) = γ+
λ .

Since
∫

∂Ω G(u+
0 , v

+
0 )ds > 0, by Lemma 2.6(ii), there exists a unique t3 =

t3(u
+
0 , v

+
0 ) ∈ (0, t∗2(u

+
0 , v

+
0 )) such that (t3u

+
0 , t3v

+
0 ) ∈ N+

λ and Jλ(t3u
+
0 , t3v

+
0 ) =

inf0≤t≤t∗
2
(u+

0
,v+

0
) Jλ(tu

+
0 , tv

+
0 ). Furthermore,

(3.4)
d

dt
Jλ(tu

+
0 , tv

+
0 ) < 0 for t ∈ (0, t3).

Recall that b(u,v)(t) = tp−α‖(u, v)‖p − βtβ−α
∫

∂ΩG(u, v)ds for t > 0. Then

(3.5) b(u+

0
,v+

0
)(t3) = λα

∫

Ω

F (u+
0 , v

+
0 )dx.

By (3.1), (3.2) and (3.5),

lim
n→+∞

(

b(un,vn)(t3)− λα

∫

Ω

F (un, vn)dx

)

= lim
n→+∞

(

t
p−α
3 ‖(un, vn)‖

p − βt
β−α
3

∫

∂Ω

G(un, vn)ds− λα

∫

Ω

F (un, vn)dx

)

= t
p−α
3 lim

n→+∞
‖(un, vn)‖

p − βt
β−α
3

∫

∂Ω

G(u+
0 , v

+
0 )ds− λα

∫

Ω

F (u+
0 , v

+
0 )dx

> t
p−α
3 ‖(u+

0 , v
+
0 )‖

p − βt
β−α
3

∫

∂Ω

G(u+
0 , v

+
0 )ds− λα

∫

Ω

F (u+
0 , v

+
0 )dx

= b(u+

0
,v+

0
)(t3)− λα

∫

Ω

F (u+
0 , v

+
0 )dx = 0,
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which implies that, for n large enough,

(3.6) b(un,vn)(t3) > λα

∫

Ω

F (un, vn)dx.

On the other hand, since (un, vn) ∈ N+
λ , by (2.2),

∫

∂Ω

G(un, vn)ds >
(α− p)‖(un, vn)‖p

β(α− β)
,

which implies that t∗2(un, vn) > 1 by Lemma 2.6(ii). Moreover, we obtain

b(un,vn)(1) = ‖(un, vn)‖
p − β

∫

∂Ω

G(un, vn)ds = λα

∫

Ω

F (un, vn)dx,

and b(un,vn)(t) is increasing for t ∈ (0, t∗2(un, vn)). Thus

(3.7) b(un,vn)(t) ≤ b(un,vn)(1) = λα

∫

Ω

F (un, vn)dx for all t ∈ (0, 1].

For n sufficiently large, by (3.6) and (3.7),

(3.8) 1 < t3 < t∗2(u
+
0 , v

+
0 ).

By (3.4) and (3.8),

Jλ(t3u
+
0 , t3v

+
0 ) < Jλ(u

+
0 , v

+
0 ),

which contradicts (t3u
+
0 , t3v

+
0 ) ∈ N+

λ by (3.3). Hence

(un, vn) → (u+
0 , v

+
0 ) strongly in W,

and
Jλ(un, vn) → Jλ(u

+
0 , v

+
0 ) = γ+

λ as n → +∞.

By Lemma 2.2, (u+
0 , v

+
0 ) ∈ N+

λ and (u+
0 , v

+
0 ) is a local minimizer for Jλ on

Nλ. Since Jλ(u
+
0 , v

+
0 ) = Jλ(|u

+
0 |, |v

+
0 |) and (|u+

0 |, |v
+
0 |) ∈ N+

λ , by Lemma 2.3,

we may assume (u+
0 , v

+
0 ) is a nontrivial nonnegative solution of (1.1), and thus

the proof is complete. �

Proposition 3.3. Suppose (H1) and (H2) hold and λ ∈ (0, λ∗). Then the

functional Jλ has a minimizer (u−
0 , v

−
0 ) in N−

λ and it satisfies

(i) Jλ(u
−
0 , v

−
0 ) = γ−

λ ;

(ii) (u−
0 , v

−
0 ) is a nontrivial nonnegative solution of problem (1.1).

Proof. By assumption (H1) and Lemma 2.6(i), N−
λ 6= ∅. Let {(un, vn)} be a

minimizing sequence for Jλ on N−
λ , i.e.,

lim
n→+∞

Jλ(un, vn) = inf
(u,v)∈N−

λ

Jλ(u, v).

Then by Lemma 2.4 and the Rellich-Kondrachov theorem, there exists a sub-
sequence of {(un, vn)}, denoted by itself, and (u−

0 , v
−
0 ) ∈ W such that

(un, vn) ⇀ (u−
0 , v

−
0 ) weakly in W,

un → u−
0 , vn → v−0 strongly in Lα(Ω) and Lβ(∂Ω), respectively.
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Thus, by (2.3),
∫

Ω

F (un, vn)dx →

∫

Ω

F (u−
0 , v

−
0 )dx as n → +∞,

∫

∂Ω

G(un, vn)ds →

∫

∂Ω

G(u−
0 , v

−
0 )ds as n → +∞.

Moreover, by (2.2),

(3.9)

∫

Ω

F (un, vn)dx >
p− β

λ∗α(α − β)
‖(un, vn)‖

p.

By (2.9) and (3.9), there exists a positive number D such that
∫

Ω

F (un, vn)dx > D,

which implies

(3.10)

∫

Ω

F (u−
0 , v

−
0 )dx ≥ D.

Now we prove that (un, vn) → (u−
0 , v

−
0 ) strongly in W . Suppose otherwise,

then

(3.11) ‖(u−
0 , v

−
0 )‖ < lim

n→+∞
‖(un, vn)‖.

By Lemma 2.6(i) and (3.10), there exists a unique t2 = t2(u0, v0) such that
t2 > t∗1(u0, v0), (t2u

−
0 , t2v

−
0 ) ∈ N−

λ and

Jλ(t2u
−
0 , t2v

−
0 ) = sup

t≥0
Jλ(tu

−
0 , tv

−
0 ).

Since (un, vn) ∈ N−
λ , t∗1(un, vn) < 1 and a(un,vn)(1) = β

∫

∂Ω
G(un, vn)ds for all

n ∈ N. Thus t2(un, vn) = 1 and Jλ(un, vn) ≥ Jλ(t2un, t2vn) by Lemma 2.6(i).
On the other hand, by (3.11),

Jλ(t2u
−
0 , t2v

−
0 ) < lim

n→+∞
Jλ(t2un, t2vn)

and thus

Jλ(t2u
−
0 , t2v

−
0 ) < lim

n→+∞
Jλ(un, vn) = γ−

λ .

This is a contradiction to the fact that (t2u
−
0 , t2v

−
0 ) ∈ N−

λ . Hence

(un, vn) → (u−
0 , v

−
0 ) strongly in W as n → +∞.

This implies

Jλ(un, vn) → Jλ(u
−
0 , v

−
0 ) = γ−

λ as n → +∞.

By Lemma 2.2, (u−
0 , v

−
0 ) ∈ N−

λ and (u−
0 , v

−
0 ) is a local minimizer for Jλ on

Nλ. Since Jλ(u
−
0 , v

−
0 ) = Jλ(|u

−
0 |, |v

−
0 |) and (|u−

0 |, |v
−
0 |) ∈ N−

λ , by Lemma 2.3,

we may assume that (u−
0 , v

−
0 ) is a nontrivial nonnegative solution of (1.1), and

thus the proof is complete. �
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Proof of Theorem 3.1. By Propositions 3.2 and 3.3, we obtain problem (1.1)
has two nontrivial nonnegative solutions (u+

0 , v
+
0 ) and (u−

0 , v
−
0 ) such that (u+

0 ,
v+0 ) ∈ N+

λ and (u−
0 , v

−
0 ) ∈ N−

λ . Since N+
λ ∩ N−

λ = ∅, (u+
0 , v

+
0 ) and (u−

0 , v
−
0 )

are distinct, and thus the proof is complete. �
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[7] M.-F. Bidaut-Véron and T. Raoux, Propriétés locales des solutions d’un système ellip-

tique non linéaire, C. R. Acad. Sci. Paris Sér. I Math. 320 (1995), no. 1, 35–40.
[8] L. Boccardo and D. Guedes de Figueiredo, Some remarks on a system of quasilinear

elliptic equations, Nonlinear Differential Equations Appl. 9 (2002), no. 3, 309–323.
[9] J. F. Bonder and J. D. Rossi, Existence results for the p-Laplacian with nonlinear

boundary conditions, J. Math. Anal. Appl. 263 (2001), no. 1, 195–223.
[10] K. J. Brown, The Nehari manifold for a semilinear elliptic equation involving a sublinear

term, Calc. Var. Partial Differential Equations 22 (2005), no. 4, 483–494.
[11] K. J. Brown and T.-F. Wu, A fibering map approach to a semilinear elliptic boundary

value problem, Electron. J. Differential Equations 2007 (2007), no. 69, 1–9.
[12] , A semilinear elliptic system involving nonlinear boundary condition and sign-

changing weight function, J. Math. Anal. Appl. 337 (2008), no. 2, 1326–1336.
[13] J. Chabrowski, On multiple solutions for nonhomogeneous system of elliptic equations,

Rev. Mat. Univ. Complut. Madrid 9 (1996), no. 1, 207–234.
[14] C.-Y. Chen, Y.-C. Kuo, and T.-F. Wu, The Nehari manifold for a Kirchhoff type problem

involving sign-changing weight functions, J. Differential Equations 250 (2011), no. 4,
1876–1908.

[15] C.-Y. Chen and T.-F. Wu, The Nehari manifold for indefinite semilinear elliptic systems

involving critical exponent, Appl. Math. Comput. 218 (2012), no. 22, 10817–10828.
[16] M. Chipot, M. Chleb́ık, M. Fila, and I. Shafrir, Existence of positive solutions of a

semilinear elliptic equation in Rn
+ with a nonlinear boundary condition, J. Math. Anal.

Appl. 223 (1998), no. 2, 429–471.
[17] M. Chipot, I. Shafrir, and M. Fila, On the solutions to some elliptic equations with

nonlinear Neumann boundary conditions, Adv. Differential Equations 1 (1996), no. 1,
91–110.



112 JUN ZHOU AND CHAN-GYUN KIM

[18] P. Clément, J. Fleckinger, E. Mitidieri, and F. de Thélin, Existence of positive solutions

for a nonvariational quasilinear elliptic system, J. Differential Equations 166 (2000),
no. 2, 455–477.
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