DOI QR코드

DOI QR Code

A Study on the Side Shear Developed during Pullout of Suction Pile in Clays using 3D Numerical Analysis

3차원 수치해석을 이용한 점토지반에 설치된 석션파일 인발 시 발현되는 전단응력에 관한 연구

  • Lee, Myungjae (Department of Civil Engineering, Hongik University) ;
  • Youn, Heejung (Department of Civil Engineering, Hongik University)
  • Received : 2013.11.15
  • Accepted : 2013.01.08
  • Published : 2014.02.01

Abstract

This paper presents the pullout behavior of suction pile using finite difference method; and the commercial software, FLAC3D, was employed for the numerical analyses. The ultimate pullout capacity of suction pile was predicted using conventional equations, and the results were compared with the results from numerical analyses with varying pile diameter, pile length, and the undrained shear strength of clays. Based on the results from 24 analyses, it was found that the failure pattern depends not only on the drainage condition of suction pile, but also on the pile dimensions and the material properties of surrounding soils. The developed side shear (DSS) along the internal surface of the suction pile was collected from numerical analyses, which was used to classify the failure type between sliding failure and tensile failure. Regardless of the external DSS, the high internal DSS tends to result in sliding failure in the numerical analyses, which conforms well to the estimation from conventional equations.

본 논문에서는 석션파일의 인발거동을 조사하기 위해 유한차분법 상용 프로그램인 FLAC3D를 이용하여 수치해석을 수행하였다. 석션파일의 인발지지력을 전통적인 지지력 식을 이용하여 구하고, 이 값을 파일의 직경, 길이, 그리고 주변 점토의 비배수 전단강도를 변수로 하는 수치해석을 통한 해석 값과 비교하였다. 총 24개의 수치해석 결과를 바탕으로 석션파일의 인발파괴는 석션파일의 배수조건뿐만 아니라 파일의 제원과 주변 지반의 물성값에 의해 형태가 결정되는 것으로 밝혀졌다. 수치해석 결과로부터 석션파일 내부 주면에 발현되는 전단응력을 구하여 활동파괴와 인장파괴 중 어떤 파괴가 발생할 것인지를 결정하는데 사용하였다. 외부주면의 전단응력과 관계없이 높은 내부 전단응력을 얻은 경우 수치해석 내에서 활동파괴가 발생하는 경우가 많았으며, 이는 전통적인 지지력 공식으로부터 얻은 예측과 잘 맞았다.

Keywords

References

  1. Allersma H. G. B., Kirstein A. A., Brinkgreve R. B. J. and Simon T. (1999), Centrifuge and numerical modelling of horizontally loaded suction piles, International Offshore and Polar Engineering Conference, Brest, France, Vol. 1, pp. 711-717.
  2. Andersen, K. H. and Jostad, H. P. (2002), Shear strength along outside wall of suction anchors in clay after installation, International Offshore and Polar Engineering Conference, Kyashu, Japan, pp. 785-794.
  3. API RP2A-WSD (2007), Recommended practice for planning, designing and constructing fixed offshore platforms-working stress design, 21th edition, American Petroleum Institute, Washington D. C., p. 62.
  4. Clukey, E. C. and Morrison, M. J. (1993), A centrifuge and analytical study to evaluate suction caissons for TLP applications in the Gulf of Mexico, Proceedings of the ASCE Conference on Foundations, ASCE, Dallas, Texas, pp. 141-156.
  5. Eltaher, A., Rajapaksa, Y. and Chang, K. (2003), Industry trends for design of anchoring systems for deepwater offshore structures, Proceedings of Offshore Technology Conference, Houston, Texas, pp. 1783-1792.
  6. Fuglsang, L. D. and Steensen-Bach, J. O. (1991), Breakout resistance of suction piles in clay, Proceedings of the International Conference on Centrifuge, Boulder, Colorado, pp. 153-159.
  7. Itasca (2009), Fast lagrangian analysis of continua in 3 dimensions-theory and background, version 4.0, Minneapolis, Itasca Consulting Group, pp. 4-10.
  8. Kim, Y. S. and Jang, Y. S. (2011), Analysis of load capacity and deformation behavior of suction pile installed in sand, Journal of the Korean Geotechnical Society, Vol. 27, No. 11, pp. 27-37 (in Korean). https://doi.org/10.7843/kgs.2011.27.11.027
  9. Lee, J. H., Kim, D. W., Chung, M. K., Kwak, K. S. and Jung, Y. H. (2011), Numerical analysis of the suction pile behavior with different lateral loading locations, Journal of the Korean Geotechnical Society, Vol. 27, No. 4, pp. 67-76 (in Korean). https://doi.org/10.7843/kgs.2011.27.4.067
  10. Lee, M. Y., Lee, I., Kim, H. T., Youn, H. J. and Jang, I. S. (2012), Numerical analysis on the sliding failure of suction pile, International Offshore and Polar Engineering Conference, Rhodes, Greece, Vol. 2, pp. 646-649.
  11. Randolph, M. and House, A. (2002), Analysis of suction caisson capacity in clay, Offshore Technology Conference, Houston, Texas. OTC-14236.
  12. Supachawarote, C. (2006), Inclined load capacity of suction caisson in clay, Ph D. dissertation, The University of Western Australia, Perth, Australia. p. 15.