DOI QR코드

DOI QR Code

Baroplastic Properties of Core-double Shell Type Nanoparticles Consisting of Crosslinked PS as a Core and PBA and PS as Shells

가교된 PS 코어와 PBA 및 PS 셸로 이루어진 코어-더블셸형 나노입자의 압력가소성

  • Park, Ji-Young (Department of Engineering Chemistry, College of Engineering, Chungbuk National University) ;
  • Ryu, Sang-Woog (Department of Engineering Chemistry, College of Engineering, Chungbuk National University)
  • 박지영 (충북대학교 공과대학 공업화학과) ;
  • 류상욱 (충북대학교 공과대학 공업화학과)
  • Received : 2013.08.30
  • Accepted : 2013.10.12
  • Published : 2014.01.25

Abstract

Polymer nanoparticles with cross-linked core and PBA/PS double-shell were synthesized and their baroplastic properties were characterized. PBA/PS, the inner and outer shell with cross-linked core consisting of St and DVB were synthesized by three-stage emulsion polymerization. The obtained materials exhibited pressure-induced mixing of their components and could be processed at $25^{\circ}C$ by compression molding which means there was no effect of the presence of cross-linked core. Interestingly, the Young's modulus of molded objects has found to be affected strongly by the size of double-shell nanoparticles. Furthermore, the molded object of higher PBA content was successfully recycled 5 times at $25^{\circ}C$ and showed 0.55 MPa of modulus and 1.81 MPa of strength at break.

가교결합된 코어와 PBA, PS 더블-셸을 갖는 고분자 나노입자를 제조하고 압력가소 특성을 평가하였다. 더블-셸을 합성하기 위해 먼저, 가교된 코어입자를 St, DVB의 에멀션 중합을 통해서 제조하였으며, 이어서 PBA가 내부셸, PS가 외부셸을 형성하도록 3 단계의 연속적인 에멀션 중합을 수행하였다. 제조된 더블-셸 나노입자는 가교된 코어의 존재에도 불구하고 PBA, PS 간 압력상용성을 발견할 수 있었으며, $25^{\circ}C$에서 반투명한 시편으로 압출성형될 수 있었다. 기계적 물성측정 결과, 성형물의 탄성계수는 더블-셸 나노입자의 크기에 직접적으로 연관됨을 알 수 있었다. 또한 PBA가 과량으로 첨가된 시편의 경우, $25^{\circ}C$에서 재가공이 성공적으로 진행되어 5회의 연속된 압출성형에도 불구하고 0.55MPa의 탄성계수와 1.81 MPa의 파단강도를 얻을 수 있었다.

Keywords

Acknowledgement

Supported by : 충북대학교

References

  1. J. Odian, Principles of Polymerization, John Wiley & Sons, New York, 1991.
  2. V. L. Dimonie, E. S. Daniels, O. L. Shaffer, and M. S. El-Aasser, Emulsion Polymerization and Emulsion Polymers, P. A. Lowell and M. S. El-Aasser, Editors, Wiley, New York, 1997.
  3. O. Kalinina and E. Kumacheva, Macromolecules, 34, 6380 (2001). https://doi.org/10.1021/ma0103472
  4. H. Keskkula and D. R. Paul, "Toughening Agents for Engineering Polymers," in Rubber Toughened Engineering Plastics, A. A. Collier, Editor, Springer, Netherlands, Chapter 5, p 136 (1994).
  5. K. Landfester, C. Boeffel, M. Lambla, and H. W. Spiess, Macromolecules, 29, 5972 (1996). https://doi.org/10.1021/ma960095i
  6. Y. Zhao and M. W. Urban, Macromolecules, 33, 8426 (2000). https://doi.org/10.1021/ma000625h
  7. J. A. Gonzales-Leon, S. W. Ryu, S. A. Hewlett, S. H. Ibrahim, and A. M. Mayes, Macromolecules, 38, 8036 (2005). https://doi.org/10.1021/ma0508045
  8. M. J. Kim, Y. Choi, and S. W. Ryu, Polymer(Korea), 32, 573 (2008).
  9. D. A. Hajduk, P. Urayama, S. M. Gruner, S. Erramilli, R. A. Register, K. Brister, and L. J. Fetters, Macromolecules, 28, 7148 (1995). https://doi.org/10.1021/ma00125a017
  10. M. Pollard, T. P. Russell, A. V. Ruzette, A. M. Mayes, and Y. Gallot, Macromolecules, 31, 6493 (1998). https://doi.org/10.1021/ma980316f
  11. A. V. Ruzette, P. Banerjee, A. M. Mayes, and T. P. Russell, J. Chem. Phys., 114, 8205 (2001). https://doi.org/10.1063/1.1361072
  12. D. Y. Ryu, D. J. Lee, J. K. Kim, K. A. Lavery, T. P. Russell, Y. S. Han, C. H. Lee, and P. Thiyagarajan, Phys. Rev. Lett., 90, 235501 (2003). https://doi.org/10.1103/PhysRevLett.90.235501
  13. J. Cho and Z. G. Wang, Macromolecules, 39, 4576 (2006). https://doi.org/10.1021/ma052565r
  14. J. Cho, K. Shin, K. S. Cho, Y. S. Seo, S. K. Satija, D. Y. Ryu, and J. K. Kim, Macromolecules, 41, 955 (2008). https://doi.org/10.1021/ma071604r
  15. J. A. Gonzales-Leon, M. H. Acar, S. W. Ryu, A. V. Ruzette, and A. M. Mayes, Nature(London), 426, 424 (2003). https://doi.org/10.1038/nature02140
  16. K. H. Lee and S. W. Ryu, Macromol. Res., 20, 1294 (2012). https://doi.org/10.1007/s13233-012-0186-z