DOI QR코드

DOI QR Code

Genome-Wide Identification and Classification of MicroRNAs Derived from Repetitive Elements

  • Gim, Jeong-An (Department of Biological Sciences, College of Natural Sciences, Pusan National University) ;
  • Ha, Hong-Seok (Department of Genetics, Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey) ;
  • Ahn, Kung (TBI, Theragen BiO Institute, TheragenEtex) ;
  • Kim, Dae-Soo (Genome Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Kim, Heui-Soo (Department of Biological Sciences, College of Natural Sciences, Pusan National University)
  • Received : 2014.07.29
  • Accepted : 2014.10.28
  • Published : 2014.12.31

Abstract

MicroRNAs (miRNAs) are known for their role in mRNA silencing via interference pathways. Repetitive elements (REs) share several characteristics with endogenous precursor miRNAs. In this study, 406 previously identified and 1,494 novel RE-derived miRNAs were sorted from the GENCODE v.19 database using the RepeatMasker program. They were divided into six major types, based on their genomic structure. More novel RE-derived miRNAs were confirmed than identified as RE-derived miRNAs. In conclusion, many miRNAs have not yet been identified, most of which are derived from REs.

Keywords

References

  1. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004;116:281-297. https://doi.org/10.1016/S0092-8674(04)00045-5
  2. Piriyapongsa J, Jordan IK. A family of human microRNA genes from miniature inverted-repeat transposable elements. PLoS One 2007;2:e203. https://doi.org/10.1371/journal.pone.0000203
  3. Kim VN. MicroRNA biogenesis: coordinated cropping and dicing. Nat Rev Mol Cell Biol 2005;6:376-385.
  4. Hutvagner G, Simard MJ. Argonaute proteins: key players in RNA silencing. Nat Rev Mol Cell Biol 2008;9:22-32. https://doi.org/10.1038/nrm2321
  5. Hedges DJ, Batzer MA. From the margins of the genome: mobile elements shape primate evolution. Bioessays 2005;27:785-794. https://doi.org/10.1002/bies.20268
  6. Kidwell MG, Lisch DR. Perspective: transposable elements, parasitic DNA, and genome evolution. Evolution 2001;55:1-24. https://doi.org/10.1111/j.0014-3820.2001.tb01268.x
  7. Reiss D, Zhang Y, Mager DL. Widely variable endogenous retroviral methylation levels in human placenta. Nucleic Acids Res 2007;35:4743-4754. https://doi.org/10.1093/nar/gkm455
  8. Sin HS, Huh JW, Kim DS, Kang DW, Min DS, Kim TH, et al. Transcriptional control of the HERV-H LTR element of the GSDML gene in human tissues and cancer cells. Arch Virol 2006;151:1985-1994. https://doi.org/10.1007/s00705-006-0764-5
  9. Piriyapongsa J, Marino-Ramirez L, Jordan IK. Origin and evolution of human microRNAs from transposable elements. Genetics 2007;176:1323-1337.
  10. Yuan Z, Sun X, Jiang D, Ding Y, Lu Z, Gong L, et al. Origin and evolution of a placental-specific microRNA family in the human genome. BMC Evol Biol 2010;10:346. https://doi.org/10.1186/1471-2148-10-346
  11. Ahn K, Gim JA, Ha HS, Han K, Kim HS. The novel MER transposon- derived miRNAs in human genome. Gene 2013;512:422-428. https://doi.org/10.1016/j.gene.2012.08.028
  12. Borchert GM, Holton NW, Williams JD, Hernan WL, Bishop IP, Dembosky JA, et al. Comprehensive analysis of microRNA genomic loci identifies pervasive repetitive-element origins. Mob Genet Elements 2011;1:8-17. https://doi.org/10.4161/mge.1.1.15766
  13. Piriyapongsa J, Jordan IK. Dual coding of siRNAs and miRNAs by plant transposable elements. RNA 2008;14:814-821. https://doi.org/10.1261/rna.916708
  14. Saini HK, Griffiths-Jones S, Enright AJ. Genomic analysis of human microRNA transcripts. Proc Natl Acad Sci U S A 2007;104:17719-17724. https://doi.org/10.1073/pnas.0703890104
  15. Smalheiser NR, Torvik VI. Mammalian microRNAs derived from genomic repeats. Trends Genet 2005;21:322-326. https://doi.org/10.1016/j.tig.2005.04.008
  16. Zhang R, Peng Y, Wang W, Su B. Rapid evolution of an X-linked microRNA cluster in primates. Genome Res 2007;17:612-617. https://doi.org/10.1101/gr.6146507
  17. Jurka J, Kaplan DJ, Duncan CH, Walichiewicz J, Milosavljevic A, Murali G, et al. Identification and characterization of new human medium reiteration frequency repeats. Nucleic Acids Res 1993;21:1273-1279. https://doi.org/10.1093/nar/21.5.1273
  18. Liang T, Guo L, Liu C. Genome-wide analysis of mir-548 gene family reveals evolutionary and functional implications. J Biomed Biotechnol 2012;2012:679563.
  19. Hertel J, Lindemeyer M, Missal K, Fried C, Tanzer A, Flamm C, et al. The expansion of the metazoan microRNA repertoire. BMC Genomics 2006;7:25. https://doi.org/10.1186/1471-2164-7-25
  20. Yuan Z, Sun X, Liu H, Xie J. MicroRNA genes derived from repetitive elements and expanded by segmental duplication events in mammalian genomes. PLoS One 2011;6:e17666. https://doi.org/10.1371/journal.pone.0017666
  21. Harrow J, Frankish A, Gonzalez JM, Tapanari E, Diekhans M, Kokocinski F, et al. GENCODE: the reference human genome annotation for The ENCODE Project. Genome Res 2012;22:1760-1774. https://doi.org/10.1101/gr.135350.111
  22. Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 2010;26:841-842. https://doi.org/10.1093/bioinformatics/btq033
  23. Krol J, Sobczak K, Wilczynska U, Drath M, Jasinska A, Kaczynska D, et al. Structural features of microRNA (miRNA) precursors and their relevance to miRNA biogenesis and small interfering RNA/short hairpin RNA design. J Biol Chem 2004;279:42230-42239. https://doi.org/10.1074/jbc.M404931200
  24. Ambros V, Bartel B, Bartel DP, Burge CB, Carrington JC, Chen X, et al. A uniform system for microRNA annotation. RNA 2003;9:277-279. https://doi.org/10.1261/rna.2183803
  25. Griffiths-Jones S. The microRNA Registry. Nucleic Acids Res 2004;32:D109-D111. https://doi.org/10.1093/nar/gkh023
  26. Silva JC, Shabalina SA, Harris DG, Spouge JL, Kondrashovi AS. Conserved fragments of transposable elements in intergenic regions: evidence for widespread recruitment of MIRand L2-derived sequences within the mouse and human genomes. Genet Res 2003;82:1-18. https://doi.org/10.1017/S0016672303006268
  27. Kidwell MG, Lisch DR. Transposable elements and host genome evolution. Trends Ecol Evol 2000;15:95-99. https://doi.org/10.1016/S0169-5347(99)01817-0
  28. Liang Y, Ridzon D, Wong L, Chen C. Characterization of microRNA expression profiles in normal human tissues. BMC Genomics 2007;8:166. https://doi.org/10.1186/1471-2164-8-166
  29. Denli AM, Tops BB, Plasterk RH, Ketting RF, Hannon GJ. Processing of primary microRNAs by the Microprocessor complex. Nature 2004;432:231-235. https://doi.org/10.1038/nature03049
  30. Jordan IK, Miller WJ. Genome defense against transposable elements and the origins of regulatory RNA. In: Genome Dynamics and Stability. Vol. 4. Transposon and the Dynamic Genome (Lankenau DK, Volff JN, eds.). Heidelberg: Springer, 2009. pp. 77-94.
  31. Lee Y, Jeon K, Lee JT, Kim S, Kim VN. MicroRNA maturation: stepwise processing and subcellular localization. EMBO J 2002;21:4663-4670. https://doi.org/10.1093/emboj/cdf476
  32. Zhang R, Wang YQ, Su B. Molecular evolution of a primate-specific microRNA family. Mol Biol Evol 2008;25:1493-1502. https://doi.org/10.1093/molbev/msn094
  33. Lehnert S, Van Loo P, Thilakarathne PJ, Marynen P, Verbeke G, Schuit FC. Evidence for co-evolution between human microRNAs and Alu-repeats. PLoS One 2009;4:e4456. https://doi.org/10.1371/journal.pone.0004456
  34. Noguer-Dance M, Abu-Amero S, Al-Khtib M, Lefevre A, Coullin P, Moore GE, et al. The primate-specific microRNA gene cluster (C19MC) is imprinted in the placenta. Hum Mol Genet 2010;19:3566-3582. https://doi.org/10.1093/hmg/ddq272
  35. Gu TJ, Yi X, Zhao XW, Zhao Y, Yin JQ. Alu-directed transcriptional regulation of some novel miRNAs. BMC Genomics 2009;10:563. https://doi.org/10.1186/1471-2164-10-563

Cited by

  1. Evolutionary impact of transposable elements on genomic diversity and lineage-specific innovation in vertebrates vol.23, pp.3, 2015, https://doi.org/10.1007/s10577-015-9493-5
  2. MDTE DB: A Database for MicroRNAs Derived from Transposable Element vol.13, pp.6, 2016, https://doi.org/10.1109/TCBB.2015.2511767
  3. MicroRNAs As Potential Targets for Abiotic Stress Tolerance in Plants vol.7, pp.1664-462X, 2016, https://doi.org/10.3389/fpls.2016.00817
  4. Abiotic stress miRNomes in the Triticeae vol.17, pp.2-3, 2017, https://doi.org/10.1007/s10142-016-0525-9
  5. Identification and Expression of Equine MER-Derived miRNAs vol.40, pp.4, 2017, https://doi.org/10.14348/molcells.2017.2295
  6. Exploring the read-write genome: mobile DNA and mammalian adaptation vol.52, pp.1, 2017, https://doi.org/10.1080/10409238.2016.1226748
  7. A Comprehensive Prescription for Plant miRNA Identification vol.7, pp.1664-462X, 2017, https://doi.org/10.3389/fpls.2016.02058
  8. Living Organisms Author Their Read-Write Genomes in Evolution vol.6, pp.4, 2017, https://doi.org/10.3390/biology6040042
  9. Epigenetic Hypothesis of the Role of Peptides in Aging vol.8, pp.3, 2018, https://doi.org/10.1134/S2079057018030128
  10. The Role of Transposable Elements in Emergence of Metazoa vol.83, pp.3, 2018, https://doi.org/10.1134/S000629791803001X
  11. The Role of Transposons in Epigenetic Regulation of Ontogenesis vol.49, pp.2, 2018, https://doi.org/10.1134/S1062360418020066
  12. Functional Dualism of Transposon Transcripts in Evolution of Eukaryotic Genomes vol.49, pp.6, 2018, https://doi.org/10.1134/S1062360418070019
  13. High-throughput sequencing and differential expression analysis of miRNAs in response to Brassinosteroid treatment in Arabidopsis thaliana pp.1438-7948, 2019, https://doi.org/10.1007/s10142-019-00668-1