References
- Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004;116:281-297. https://doi.org/10.1016/S0092-8674(04)00045-5
- Piriyapongsa J, Jordan IK. A family of human microRNA genes from miniature inverted-repeat transposable elements. PLoS One 2007;2:e203. https://doi.org/10.1371/journal.pone.0000203
- Kim VN. MicroRNA biogenesis: coordinated cropping and dicing. Nat Rev Mol Cell Biol 2005;6:376-385.
- Hutvagner G, Simard MJ. Argonaute proteins: key players in RNA silencing. Nat Rev Mol Cell Biol 2008;9:22-32. https://doi.org/10.1038/nrm2321
- Hedges DJ, Batzer MA. From the margins of the genome: mobile elements shape primate evolution. Bioessays 2005;27:785-794. https://doi.org/10.1002/bies.20268
- Kidwell MG, Lisch DR. Perspective: transposable elements, parasitic DNA, and genome evolution. Evolution 2001;55:1-24. https://doi.org/10.1111/j.0014-3820.2001.tb01268.x
- Reiss D, Zhang Y, Mager DL. Widely variable endogenous retroviral methylation levels in human placenta. Nucleic Acids Res 2007;35:4743-4754. https://doi.org/10.1093/nar/gkm455
- Sin HS, Huh JW, Kim DS, Kang DW, Min DS, Kim TH, et al. Transcriptional control of the HERV-H LTR element of the GSDML gene in human tissues and cancer cells. Arch Virol 2006;151:1985-1994. https://doi.org/10.1007/s00705-006-0764-5
- Piriyapongsa J, Marino-Ramirez L, Jordan IK. Origin and evolution of human microRNAs from transposable elements. Genetics 2007;176:1323-1337.
- Yuan Z, Sun X, Jiang D, Ding Y, Lu Z, Gong L, et al. Origin and evolution of a placental-specific microRNA family in the human genome. BMC Evol Biol 2010;10:346. https://doi.org/10.1186/1471-2148-10-346
- Ahn K, Gim JA, Ha HS, Han K, Kim HS. The novel MER transposon- derived miRNAs in human genome. Gene 2013;512:422-428. https://doi.org/10.1016/j.gene.2012.08.028
- Borchert GM, Holton NW, Williams JD, Hernan WL, Bishop IP, Dembosky JA, et al. Comprehensive analysis of microRNA genomic loci identifies pervasive repetitive-element origins. Mob Genet Elements 2011;1:8-17. https://doi.org/10.4161/mge.1.1.15766
- Piriyapongsa J, Jordan IK. Dual coding of siRNAs and miRNAs by plant transposable elements. RNA 2008;14:814-821. https://doi.org/10.1261/rna.916708
- Saini HK, Griffiths-Jones S, Enright AJ. Genomic analysis of human microRNA transcripts. Proc Natl Acad Sci U S A 2007;104:17719-17724. https://doi.org/10.1073/pnas.0703890104
- Smalheiser NR, Torvik VI. Mammalian microRNAs derived from genomic repeats. Trends Genet 2005;21:322-326. https://doi.org/10.1016/j.tig.2005.04.008
- Zhang R, Peng Y, Wang W, Su B. Rapid evolution of an X-linked microRNA cluster in primates. Genome Res 2007;17:612-617. https://doi.org/10.1101/gr.6146507
- Jurka J, Kaplan DJ, Duncan CH, Walichiewicz J, Milosavljevic A, Murali G, et al. Identification and characterization of new human medium reiteration frequency repeats. Nucleic Acids Res 1993;21:1273-1279. https://doi.org/10.1093/nar/21.5.1273
- Liang T, Guo L, Liu C. Genome-wide analysis of mir-548 gene family reveals evolutionary and functional implications. J Biomed Biotechnol 2012;2012:679563.
- Hertel J, Lindemeyer M, Missal K, Fried C, Tanzer A, Flamm C, et al. The expansion of the metazoan microRNA repertoire. BMC Genomics 2006;7:25. https://doi.org/10.1186/1471-2164-7-25
- Yuan Z, Sun X, Liu H, Xie J. MicroRNA genes derived from repetitive elements and expanded by segmental duplication events in mammalian genomes. PLoS One 2011;6:e17666. https://doi.org/10.1371/journal.pone.0017666
- Harrow J, Frankish A, Gonzalez JM, Tapanari E, Diekhans M, Kokocinski F, et al. GENCODE: the reference human genome annotation for The ENCODE Project. Genome Res 2012;22:1760-1774. https://doi.org/10.1101/gr.135350.111
- Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 2010;26:841-842. https://doi.org/10.1093/bioinformatics/btq033
- Krol J, Sobczak K, Wilczynska U, Drath M, Jasinska A, Kaczynska D, et al. Structural features of microRNA (miRNA) precursors and their relevance to miRNA biogenesis and small interfering RNA/short hairpin RNA design. J Biol Chem 2004;279:42230-42239. https://doi.org/10.1074/jbc.M404931200
- Ambros V, Bartel B, Bartel DP, Burge CB, Carrington JC, Chen X, et al. A uniform system for microRNA annotation. RNA 2003;9:277-279. https://doi.org/10.1261/rna.2183803
- Griffiths-Jones S. The microRNA Registry. Nucleic Acids Res 2004;32:D109-D111. https://doi.org/10.1093/nar/gkh023
- Silva JC, Shabalina SA, Harris DG, Spouge JL, Kondrashovi AS. Conserved fragments of transposable elements in intergenic regions: evidence for widespread recruitment of MIRand L2-derived sequences within the mouse and human genomes. Genet Res 2003;82:1-18. https://doi.org/10.1017/S0016672303006268
- Kidwell MG, Lisch DR. Transposable elements and host genome evolution. Trends Ecol Evol 2000;15:95-99. https://doi.org/10.1016/S0169-5347(99)01817-0
- Liang Y, Ridzon D, Wong L, Chen C. Characterization of microRNA expression profiles in normal human tissues. BMC Genomics 2007;8:166. https://doi.org/10.1186/1471-2164-8-166
- Denli AM, Tops BB, Plasterk RH, Ketting RF, Hannon GJ. Processing of primary microRNAs by the Microprocessor complex. Nature 2004;432:231-235. https://doi.org/10.1038/nature03049
- Jordan IK, Miller WJ. Genome defense against transposable elements and the origins of regulatory RNA. In: Genome Dynamics and Stability. Vol. 4. Transposon and the Dynamic Genome (Lankenau DK, Volff JN, eds.). Heidelberg: Springer, 2009. pp. 77-94.
- Lee Y, Jeon K, Lee JT, Kim S, Kim VN. MicroRNA maturation: stepwise processing and subcellular localization. EMBO J 2002;21:4663-4670. https://doi.org/10.1093/emboj/cdf476
- Zhang R, Wang YQ, Su B. Molecular evolution of a primate-specific microRNA family. Mol Biol Evol 2008;25:1493-1502. https://doi.org/10.1093/molbev/msn094
- Lehnert S, Van Loo P, Thilakarathne PJ, Marynen P, Verbeke G, Schuit FC. Evidence for co-evolution between human microRNAs and Alu-repeats. PLoS One 2009;4:e4456. https://doi.org/10.1371/journal.pone.0004456
- Noguer-Dance M, Abu-Amero S, Al-Khtib M, Lefevre A, Coullin P, Moore GE, et al. The primate-specific microRNA gene cluster (C19MC) is imprinted in the placenta. Hum Mol Genet 2010;19:3566-3582. https://doi.org/10.1093/hmg/ddq272
- Gu TJ, Yi X, Zhao XW, Zhao Y, Yin JQ. Alu-directed transcriptional regulation of some novel miRNAs. BMC Genomics 2009;10:563. https://doi.org/10.1186/1471-2164-10-563
Cited by
- Evolutionary impact of transposable elements on genomic diversity and lineage-specific innovation in vertebrates vol.23, pp.3, 2015, https://doi.org/10.1007/s10577-015-9493-5
- MDTE DB: A Database for MicroRNAs Derived from Transposable Element vol.13, pp.6, 2016, https://doi.org/10.1109/TCBB.2015.2511767
- MicroRNAs As Potential Targets for Abiotic Stress Tolerance in Plants vol.7, pp.1664-462X, 2016, https://doi.org/10.3389/fpls.2016.00817
- Abiotic stress miRNomes in the Triticeae vol.17, pp.2-3, 2017, https://doi.org/10.1007/s10142-016-0525-9
- Identification and Expression of Equine MER-Derived miRNAs vol.40, pp.4, 2017, https://doi.org/10.14348/molcells.2017.2295
- Exploring the read-write genome: mobile DNA and mammalian adaptation vol.52, pp.1, 2017, https://doi.org/10.1080/10409238.2016.1226748
- A Comprehensive Prescription for Plant miRNA Identification vol.7, pp.1664-462X, 2017, https://doi.org/10.3389/fpls.2016.02058
- Living Organisms Author Their Read-Write Genomes in Evolution vol.6, pp.4, 2017, https://doi.org/10.3390/biology6040042
- Epigenetic Hypothesis of the Role of Peptides in Aging vol.8, pp.3, 2018, https://doi.org/10.1134/S2079057018030128
- The Role of Transposable Elements in Emergence of Metazoa vol.83, pp.3, 2018, https://doi.org/10.1134/S000629791803001X
- The Role of Transposons in Epigenetic Regulation of Ontogenesis vol.49, pp.2, 2018, https://doi.org/10.1134/S1062360418020066
- Functional Dualism of Transposon Transcripts in Evolution of Eukaryotic Genomes vol.49, pp.6, 2018, https://doi.org/10.1134/S1062360418070019
- High-throughput sequencing and differential expression analysis of miRNAs in response to Brassinosteroid treatment in Arabidopsis thaliana pp.1438-7948, 2019, https://doi.org/10.1007/s10142-019-00668-1