DOI QR코드

DOI QR Code

골육종에서 술전 항암화학요법의 효과 판정

Evaluation of Neoadjuvant Chemotherapy Effect in Osteosarcoma

  • 주민욱 (가톨릭대학교 의과대학 정형외과학교실) ;
  • 강용구 (가톨릭대학교 의과대학 정형외과학교실) ;
  • 유이령 (가톨릭대학교 의과대학 방사선과학교실) ;
  • 최우희 (가톨릭대학교 의과대학 방사선과학교실) ;
  • 정양국 (가톨릭대학교 의과대학 정형외과학교실) ;
  • 김동현 (가톨릭대학교 의과대학 정형외과학교실) ;
  • 강진우 (가톨릭대학교 의과대학 정형외과학교실)
  • Joo, Min Wook (Department of Orthopaedic Surgery, College of Medicine, The Catholic University of Korea) ;
  • Kang, Yong-Koo (Department of Orthopaedic Surgery, College of Medicine, The Catholic University of Korea) ;
  • Yoo, Ie Ryung (Department of Radiology, College of Medicine, The Catholic University of Korea) ;
  • Choi, Woo Hee (Department of Radiology, College of Medicine, The Catholic University of Korea) ;
  • Chung, Yang-Guk (Department of Orthopaedic Surgery, College of Medicine, The Catholic University of Korea) ;
  • Kim, Dong-Hyun (Department of Orthopaedic Surgery, College of Medicine, The Catholic University of Korea) ;
  • Kang, Jin-Woo (Department of Orthopaedic Surgery, College of Medicine, The Catholic University of Korea)
  • 투고 : 2014.10.31
  • 심사 : 2014.12.01
  • 발행 : 2014.12.30

초록

목적: 골육종에 대한 술전 항암화학요법의 효과를 조기에 비침습적으로 평가하기 위해 다양한 영상 진단 기법들을 사용해 왔다. 저자들은 골육종에 대한 술전 항암화학요법의 효과를 예측하는 데 있어 단순 촬영 및 양전자 방출 단층 촬영과 같은 영상 검사들의 효용성을 평가하고 양성자 방출 단층 촬영에서 얻어진 값들을 해석하는 데 있어서의 통칙을 정해 보고자 하였다. 대상 및 방법: 2주기 술전 항암화학요법 후 외과적 절제를 시행한 18명의 골육종 환자들을 대상으로 하였다. 남자 13명, 여자 5명이었으며, 연령의 중위수는 19세였다. 술전 항암화학요법의 전후로 단순 촬영 및 양전자 방출 단층 촬영을 시행하였다. 절제된 종양에 대해 병리검사를 시행하여 조직학적 반응 등급을 확인하였다. 조직병리학적 괴사 정도와 방사선학적 소견, 술전 항암화학요법 후 최대 표준섭취계수(maximum standardized uptake value), 평균 표준섭취계수(average standardized uptake value), 대사종양용적(metabolic tumor volume) 및 해당 값들의 감소율에 대해 통계학적 분석을 시행하였다. 결과: 조직학적 평가 상, 8명의 환자에서 술전 항암화학요법에 대해 좋은 반응을 확인하였다. 최대 표준섭취계수 감소율의 중위수는 좋은 반응을 보인 군에서 74 (23-77) %였고, 나머지에서 42 (-32-76) %였다. 대사종양용적 감소율의 중위수는 좋은 반응을 보인 군에서 93.5 (62-99) %였고 나머지에서 46 (-81-100) %였다. 방사선학적 소견의 범주는 조직학적 반응에 따른 차이가 없었지만 (p=1.0), 최대 표준섭취계수의 감소율은 유의한 차이를 보였다(p=0.041). 대사종양용적의 감소율 차이는 통계학적 유의성에 근접하였다(p=0.071). 결론: 본 연구에서 방사선학적 소견의 범주는 골육종에 대한 술전 항암화학요법의 효과를 평가하는 데 있어 신뢰할 수 없었지만, 최대 표준섭취계수는 유용한 척도였다. 양전자 방출 단층 촬영에서 얻어지는 값들은 여러 요인에 의해 영향을 받으므로, 각 기관은 기왕의 연구들을 참고로 각자의 판단 기준을 마련하기 위해 노력해야만 한다.

Purpose: Various diagnostic imaging modalities have been used to evaluate the effect of neoadjuvant chemotherapy for osteosarcoma early and noninvasively. We evaluated the effectiveness of imaging studies of plain radiographs and positron-emission tomography/computed tomography (PET/CT) in predicting neoadjuvant chemotherapy effect for osteosarcoma and tried to establish a general principle in interpretation of PET/CT parameters. Materials and Methods: Eighteen patients who underwent two cycles of neoadjuvant chemotherapy and surgical excision for osteosarcoma were enrolled. There were 13 males and 5 females, with a median age of 19 (11-63) years. Fifteen patients of 18 had the American Joint Committe on Cancer (AJCC) stage IIB. They had plain radiographs and PET/CT before and after neoadjuvant chemotherapy. The resected tumor specimens were pathologically examined to determine histological response grade using a conventional mapping method. Statistical analysis was performed to evaluate the correlation between histopathological necrosis rate, and radiographic finding category, post-chemotherapy maximum standardized uptake value (SUVmax), average standardized uptake value and metabolic tumor volume (MTV) as well as reduction rates of them. Results: Eight patients were good responders to neoadjuvant chemotherapy based on histological evaluation. Median SUVmax reduction rate was 73 (23-77) % in good responders and 42 (-32-76) % in poor responders. Median MTV reduction rate was 93.5 (62-99) % in good responders and 46 (-81-100) % in poor responders. While radiographic finding category was not different according to histological response (p=1.0), SUVmax reduction rate was significantly different (p=0.041). Difference in MTV reduction rates approached statistical significance as well (p=0.071). Conclusion: While radiographic finding category was not reliable to assess neoadjuvant chemotherapy effect for osteosarcoma, reduction rate of SUVmax was a useful indicator in this study. As parameters of PET/CT can be influenced by various factors of settings, different centers have to make an effort to establish their own standard of judgement with reference of previous studies.

키워드

참고문헌

  1. Mirabello L, Troisi RJ, Savage SA. Osteosarcoma incidence and survival rates from 1973 to 2004: data from the Surveillance, Epidemiology, and End Results Program. Cancer. 2009;115:1531-43. https://doi.org/10.1002/cncr.24121
  2. Bacci G, Longhi A, Fagioli F, Briccoli A, Versari M, Picci P. Adjuvant and neoadjuvant chemotherapy for osteosarcoma of the extremities: 27 year experience at Rizzoli Institute, Italy. Eur J Cancer. 2005;41:2836-45. https://doi.org/10.1016/j.ejca.2005.08.026
  3. Bacci G, Ferrari S, Bertoni F, et al. Long-term outcome for patients with nonmetastatic osteosarcoma of the extremity treated at the istituto ortopedico rizzoli according to the istituto ortopedico rizzoli/osteosarcoma-2 protocol: an updated report. J Clin Oncol. 2000;18:4016-27. https://doi.org/10.1200/JCO.2000.18.24.4016
  4. Hagleitner MM, de Bont ES, Te Loo DM. Survival trends and long-term toxicity in pediatric patients with osteosarcoma. Sarcoma. 2012;2012:636405.
  5. Kim MS, Lee SY, Lee TR, et al. Prognostic nomogram for predicting the 5-year probability of developing metastasis after neo-adjuvant chemotherapy and definitive surgery for AJCC stage II extremity osteosarcoma. Ann Oncol. 2009;20:955-60. https://doi.org/10.1093/annonc/mdn723
  6. Bajpai J, Gamnagatti S, Kumar R, et al. Role of MRI in osteosarcoma for evaluation and prediction of chemotherapy response: correlation with histological necrosis. Pediatr Radiol. 2011;41:441-50. https://doi.org/10.1007/s00247-010-1876-3
  7. Jeon DG, Song WS. How can survival be improved in localized osteosarcoma? Expert Rev Anticancer Ther. 2010;10:1313-25. https://doi.org/10.1586/era.10.79
  8. Benz MR, Czernin J, Tap WD, et al. FDG-PET/CT Imaging Predicts Histopathologic Treatment Responses after Neoadjuvant Therapy in Adult Primary Bone Sarcomas. Sarcoma. 2010;2010:143540.
  9. Denecke T, Hundsdorfer P, Misch D, et al. Assessment of histological response of paediatric bone sarcomas using FDG PET in comparison to morphological volume measurement and standardized MRI parameters. Eur J Nucl Med Mol Imaging. 2010;37:1842-53. https://doi.org/10.1007/s00259-010-1484-3
  10. Franzius C, Sciuk J, Brinkschmidt C, Jurgens H, Schober O. Evaluation of chemotherapy response in primary bone tumors with F-18 FDG positron emission tomography compared with histologically assessed tumor necrosis. Clin Nucl Med. 2000; 25:874-81. https://doi.org/10.1097/00003072-200011000-00004
  11. Hamada K, Tomita Y, Inoue A, et al. Evaluation of chemotherapy response in osteosarcoma with FDG-PET. Ann Nucl Med. 2009;23:89-95. https://doi.org/10.1007/s12149-008-0213-5
  12. Jones DN, McCowage GB, Sostman HD, et al. Monitoring of neoadjuvant therapy response of soft-tissue and musculoskeletal sarcoma using fluorine-18-FDG PET. J Nucl Med. 1996;37:1438-44.
  13. Tateishi U, Kawai A, Chuman H, et al. PET/CT allows stratification of responders to neoadjuvant chemotherapy for high-grade sarcoma: a prospective study. Clin Nucl Med. 2011;36:526-32. https://doi.org/10.1097/RLU.0b013e3182175856
  14. Holscher HC, Hermans J, Nooy MA, Taminiau AH, Hogendoorn PC, Bloem JL. Can conventional radiographs be used to monitor the effect of neoadjuvant chemotherapy in patients with osteogenic sarcoma? Skeletal Radiol. 1996;25:19-24. https://doi.org/10.1007/s002560050026
  15. Cheon GJ, Kim MS, Lee JA, et al. Prediction model of chemotherapy response in osteosarcoma by 18F-FDG PET and MRI. J Nucl Med. 2009;50:1435-40. https://doi.org/10.2967/jnumed.109.063602
  16. Caldarella C, Salsano M, Isgro MA, Treglia G. The Role of Fluorine-18-fluorodeoxyglucose Positron Emission Tomography in Assessing the Response to Neoadjuvant Treatment in Patients with Osteosarcoma. Int J Mol Imaging. 2012;2012: 870301.
  17. Hongtao L, Hui Z, Bingshun W, et al. 18F-FDG positron emission tomography for the assessment of histological response to neoadjuvant chemotherapy in osteosarcomas: a meta-analysis. Surg Oncol. 2012;21:e165-70. https://doi.org/10.1016/j.suronc.2012.07.002
  18. Picci P, Bacci G, Campanacci M, et al. Histologic evaluation of necrosis in osteosarcoma induced by chemotherapy. Regional mapping of viable and nonviable tumor. Cancer. 1985;56:1515-21. https://doi.org/10.1002/1097-0142(19851001)56:7<1515::AID-CNCR2820560707>3.0.CO;2-6
  19. Picci P, Sangiorgi L, Rougraff BT, Neff JR, Casadei R, Campanacci M. Relationship of chemotherapy-induced necrosis and surgical margins to local recurrence in osteosarcoma. J Clin Oncol. 1994;12:2699-705. https://doi.org/10.1200/JCO.1994.12.12.2699
  20. Greco C, Rosenzweig K, Cascini GL, Tamburrini O. Current status of PET/CT for tumour volume definition in radiotherapy treatment planning for non-small cell lung cancer (NSCLC). Lung Cancer. 2007;57:125-34. https://doi.org/10.1016/j.lungcan.2007.03.020
  21. Konski A, Doss M, Milestone B, et al. The integration of 18-fluoro-deoxy-glucose positron emission tomography and endoscopic ultrasound in the treatment-planning process for esophageal carcinoma. Int J Radiat Oncol Biol Phys. 2005;61:1123-8. https://doi.org/10.1016/j.ijrobp.2004.07.717
  22. Nestle U, Kremp S, Schaefer-Schuler A, et al. Comparison of different methods for delineation of 18F-FDG PET-positive tissue for target volume definition in radiotherapy of patients with non-Small cell lung cancer. J Nucl Med. 2005;46:1342-8.
  23. Smith J, Heelan RT, Huvos AG, et al. Radiographic changes in primary osteogenic sarcoma following intensive chemotherapy. Radiological-pathological correlation in 63 patients. Radiology. 1982;143:355-60. https://doi.org/10.1148/radiology.143.2.6978499
  24. Vanderhoek M, Perlman SB, Jeraj R. Impact of the definition of peak standardized uptake value on quantification of treatment response. J Nucl Med. 2012;53:4-11. https://doi.org/10.2967/jnumed.111.093443
  25. Velasquez LM, Boellaard R, Kollia G, et al. Repeatability of 18F-FDG PET in a multicenter phase I study of patients with advanced gastrointestinal malignancies. J Nucl Med. 2009;50:1646-54. https://doi.org/10.2967/jnumed.109.063347
  26. Wahl RL, Jacene H, Kasamon Y, Lodge MA. From RECIST to PERCIST: Evolving Considerations for PET response criteria in solid tumors. J Nucl Med. 2009;50 Suppl 1:122S-50S. https://doi.org/10.2967/jnumed.108.057307
  27. Im HJ, Kim TS, Park SY, et al. Prediction of tumour necrosis fractions using metabolic and volumetric 18F-FDG PET/CT indices, after one course and at the completion of neoadjuvant chemotherapy, in children and young adults with osteosarcoma. Eur J Nucl Med Mol Imaging. 2012;39:39-49. https://doi.org/10.1007/s00259-011-1936-4
  28. Bielack SS, Kempf-Bielack B, Delling G, et al. Prognostic factors in high-grade osteosarcoma of the extremities or trunk: an analysis of 1,702 patients treated on neoadjuvant cooperative osteosarcoma study group protocols. J Clin Oncol. 2002;20:776-90. https://doi.org/10.1200/JCO.20.3.776