DOI QR코드

DOI QR Code

Influence of $1{\alpha}$, 25-dihydroxyvitamin $D_3$ [1, $25(OH)_2D_3$] on the expression of Sox 9 and the transient receptor potential vanilloid 5/6 ion channels in equine articular chondrocytes

  • Hdud, Ismail M. (School of Veterinary Medicine and Science, Faculty of Medicine and Health Sciences, University of Nottingham, Sutton Bonington Campus) ;
  • Loughna, Paul T. (School of Veterinary Medicine and Science, Faculty of Medicine and Health Sciences, University of Nottingham, Sutton Bonington Campus)
  • Received : 2014.06.26
  • Accepted : 2014.11.19
  • Published : 2014.12.31

Abstract

Background: Sox 9 is a major marker of chondrocyte differentiation. When chondrocytes are cultured in vitro they progressively de-differentiate and this is associated with a decline in Sox 9 expression. The active form of vitamin D, 1, 25 $(OH)_2D_3$ has been shown to be protective of cartilage in both humans and animals. In this study equine articular chondrocytes were grown in culture and the effects of 1, 25 $(OH)_2D_3$ upon Sox 9 expression examined. The expression of the transient receptor potential vanilloid (TRPV) ion channels 5 and 6 in equine chondrocytes in vitro, we have previously shown, is inversely correlated with de-differentiation. The expression of these channels in response to 1, 25 $(OH)_2D_3$ administration was therefore also examined. Results: The active form of vitamin D (1, 25 $(OH)_2D_3$ when administered to cultured equine chondrocytes at two different concentrations significantly increased the expression of Sox 9 at both. In contrast 1, 25 $(OH)_2D_3$ had no significant effect upon the expression of either TRPV 5 or 6 at either the protein or the mRNA level. Conclusions: The increased expression of Sox 9, in equine articular chondrocytes in vitro, in response to the active form of vitamin D suggests that this compound could be utilized to inhibit the progressive de-differentiation that is normally observed in these cells. It is also supportive of previous studies indicating that $1{\alpha}$, 25-dihydroxyvitamin $D_3$ can have a protective effect upon cartilage in animals in vivo. The previously observed correlation between the degree of differentiation and the expression levels of TRPV 5/6 had suggested that these ion channels may have a direct involvement in, or be modulated by, the differentiation process in vitro. The data in the present study do not support this.

Keywords

References

  1. Boyan BD, Sylvia VL, Dean DD, Del Toro F, Schwartz Z: Differential regulation of growth plate chondrocytes by 1alpha,25-(OH)2D3 and 24R,25-(OH)2D3 involves cell-maturation-specific membrane-receptor-activated phospholipid metabolism. Crit Rev Oral Biol Med 2002, 13(2):143-154. https://doi.org/10.1177/154411130201300205
  2. Tetlow LC, Smith SJ, Mawer EB, Woolley DE: Vitamin D receptors in the rheumatoid lesion: expression by chondrocytes, macrophages, and synoviocytes. Ann Rheum Dis 1999, 58(2):118-121. https://doi.org/10.1136/ard.58.2.118
  3. Lehmann B, Meurer M: Vitamin D metabolism. Dermatol Ther 2010, 23(1):2-12. https://doi.org/10.1111/j.1529-8019.2009.01286.x
  4. Fleet JC: Genomic and proteomic approaches for probing the role of vitamin D in health. Am J Clin Nutr 2004, 80(6 Suppl):1730S-1734S.
  5. Xue Y, Karaplis AC, Hendy GN, Goltzman D, Miao D: Exogenous 1,25-dihydroxyvitamin D3 exerts a skeletal anabolic effect and improves mineral ion homeostasis in mice that are homozygous for both the 1alpha-hydroxylase and parathyroid hormone null alleles. Endocrinology 2006, 147(10):4801-4810. https://doi.org/10.1210/en.2006-0403
  6. Castillo EC, Hernandez-Cueto MA, Vega-Lopez MA, Lavalle C, Kouri JB, Ortiz-Navarrete V: Effects of vitamin D supplementation during the induction and progression of osteoarthritis in a rat model. Evid Based Complement Altern Med 2012, 2012:156563.
  7. Morais Da Silva S, Hacker A, Harley V, Goodfellow P, Swain A, Lovell-Badge R: Sox9 expression during gonadal development implies a conserved role for the gene in testis differentiation in mammals and birds. Nat Genet 1996, 14(1):62-68. https://doi.org/10.1038/ng0996-62
  8. Zhao Q, Eberspaecher H, Lefebvre V, De Crombrugghe B: Parallel expression of Sox9 and Col2a1 in cells undergoing chondrogenesis. Dev Dyn 1997, 209(4):377-386. https://doi.org/10.1002/(SICI)1097-0177(199708)209:4<377::AID-AJA5>3.0.CO;2-F
  9. Wright E, Hargrave MR, Christiansen J, Cooper L, Kun J, Evans T, Gangadharan U, Greenfield A, Koopman P: The Sry-related gene Sox 9 is expressed during chondrogenesis in mouse embryos. Nat Genet 1995, 9(1):15-20. https://doi.org/10.1038/ng0195-15
  10. Shintani N, Hunziker EB: Chondrogenic differentiation of bovine synovium: bone morphogenetic proteins 2 and 7 and transforming growth factor beta1 induce the formation of different types of cartilaginous tissue. Arthritis Rheum 2007, 56(6):1869-1879. https://doi.org/10.1002/art.22701
  11. Sive JI, Baird P, Jeziorsk M, Watkins A, Hoyland JA, Freemont AJ: Expression of chondrocyte markers by cells of normal and degenerate intervertebral discs. Mol Pathol 2002, 55(2):91-97. https://doi.org/10.1136/mp.55.2.91
  12. Lefebvre V, Huang W, Harley VR, Goodfellow PN, de Crombrugghe B: SOX 9 is a potent activator of the chondrocyte-specific enhancer of the pro alpha1(II) collagen gene. Mol Cell Biol 1997, 17(4):2336-2346. https://doi.org/10.1128/MCB.17.4.2336
  13. Bridgewater LC, Lefebvre V, de Crombrugghe B: Chondrocyte-specific enhancer elements in the Col11a2 gene resemble the Col2a1 tissue-specific enhancer. J Biol Chem 1998, 273(24):14998-15006. https://doi.org/10.1074/jbc.273.24.14998
  14. Sekiya I, Tsuji K, Koopman P, Watanabe H, Yamada Y, Shinomiya K, Nifuji A, Noda M: SOX9 enhances aggrecan gene promoter/enhancer activity and is up-regulated by retinoic acid in a cartilage-derived cell line, TC6. J Biol Chem 2000, 275(15):10738-10744. https://doi.org/10.1074/jbc.275.15.10738
  15. Kou I, Ikegawa S: SOX9-dependent and -independent transcriptional regulation of human cartilage link protein. J Biol Chem 2004, 279(49):50942-50948. https://doi.org/10.1074/jbc.M406786200
  16. Xie WF, Zhang X, Sakano S, Lefebvre V, Sandell LJ: Trans-activation of the mouse cartilage-derived retinoic acid-sensitive protein gene by Sox 9. J Bone Miner Res 1999, 14(5):757-763. https://doi.org/10.1359/jbmr.1999.14.5.757
  17. Brew CJ, Clegg PD, Boot-Handford RP, Andrew JG, Hardingham T: Gene expression in human chondrocytes in late osteoarthritis is changed in both fibrillated and intact cartilage without evidence of generalised chondrocyte hypertrophy. Ann Rheum Dis 2010, 69(1):234-240. https://doi.org/10.1136/ard.2008.097139
  18. Wagner T, Wirth J, Meyer J, Zabel B, Held M, Zimmer J, Pasantes J, Bricarelli FD, Keutel J, Hustert E, Wolf U, Tommerup N, Schempp W, Scherer G: Autosomal sex reversal and campomelic dysplasia are caused by mutations in and around the SRY-related gene SOX9. Cell 1994, 79(6):1111-1120. https://doi.org/10.1016/0092-8674(94)90041-8
  19. Bi W, Deng JM, Zhang Z, Behringer RR, de Crombrugghe B: Sox 9 is required for cartilage formation. Nat Genet 1999, 22(1):85-89. https://doi.org/10.1038/8792
  20. Hargus G, Kist R, Kramer J, Gerstel D, Neitz A, Scherer G, Rohwedel J: Loss of Sox 9 function results in defective chondrocyte differentiation of mouse embryonic stem cells in vitro. Int J Dev Biol 2008, 52(4):323-332. https://doi.org/10.1387/ijdb.072490gh
  21. Cucchiarini M, Thurn T, Weimer A, Kohn D, Terwilliger EF, Madry H: Restoration of the extracellular matrix in human osteoarthritic articular cartilage by overexpression of the transcription factor SOX9. Arthritis Rheum 2007, 56(1):158-167. https://doi.org/10.1002/art.22299
  22. Benya PD, Padilla SR, Nimni ME: Independent regulation of collagen types by chondrocytes during the loss of differentiated function in culture. Cell 1978, 15(4):1313-1321. https://doi.org/10.1016/0092-8674(78)90056-9
  23. Tew SR, Clegg PD, Brew CJ, Redmond CM, Hardingham TE: SOX9 transduction of a human chondrocytic cell line identifies novel genes regulated in primary human chondrocytes and in osteoarthritis. Arthritis Res Ther 2007, 9(5):R107. https://doi.org/10.1186/ar2311
  24. Hdud IM, El-Shafei AA, Loughna P, Barrett-Jolley R, Mobasheri A: Expression of transient receptor potential vanilloid (TRPV) channels in different passages of articular chondrocytes. Int J Mol Sci 2012, 13(4):4433-4445. https://doi.org/10.3390/ijms13044433
  25. Hdud IM, Mobasheri A, Loughna PT: Effect of osmotic stress on the expression of TRPV4 and BKCa channels and possible interaction with ERK1/2 and p38 in cultured equine chondrocytes. Am J Physiol Cell Physiol 2014, 306(11):C1050-C1057. https://doi.org/10.1152/ajpcell.00287.2013
  26. Hdud IM, Mobasheri A, Loughna PT: Effects of cyclic equibiaxial mechanical stretch on alpha-BK and TRPV4 expression in equine chondrocytes. SpringerPlus 2014, 3:59. https://doi.org/10.1186/2193-1801-3-59
  27. Vennekens R, Hoenderop JG, Prenen J, Stuiver M, Willems PH, Droogmans G, Nilius B, Bindels RJ: Permeation and gating properties of the novel epithelial Ca(2+) channel. J Biol Chem 2000, 275(6):3963-3969. https://doi.org/10.1074/jbc.275.6.3963
  28. Nilius B, Vennekens R, Prenen J, Hoenderop JG, Bindels RJ, Droogmans G: Whole-cell and single channel monovalent cation currents through the novel rabbit epithelial Ca2+ channel ECaC. J Physiol 2000, 527(Pt 2):239-248. https://doi.org/10.1111/j.1469-7793.2000.00239.x
  29. Hoenderop JG, Nilius B, Bindels RJ: Calcium absorption across epithelia. Physiol Rev 2005, 85(1):373-422. https://doi.org/10.1152/physrev.00003.2004
  30. Gavenis K, Schumacher C, Schneider U, Eisfeld J, Mollenhauer J, Schmidt-Rohlfing B: Expression of ion channels of the TRP family in articular chondrocytes from osteoarthritic patients: changes between native and in vitro propagated chondrocytes. Mol Cell Biochem 2009, 321(1-2):135-143. https://doi.org/10.1007/s11010-008-9927-x
  31. Taparia S, Fleet JC, Peng JB, Wang XD, Wood RJ: 1,25-Dihydroxyvitamin D and 25-hydroxyvitamin D mediated regulation of TRPV6 (a putative epithelial calcium channel) mRNA expression in Caco-2 cells. Eur J Nutr 2006, 45(4):196-204. https://doi.org/10.1007/s00394-005-0586-3
  32. Teerapornpuntakit J, Dorkkam N, Wongdee K, Krishnamra N, Charoenphandhu N: Endurance swimming stimulates transepithelial calcium transport and alters the expression of genes related to calcium absorption in the intestine of rats. Am J Physiol Endocrinol Metab 2009, 296(4):E775-E786. https://doi.org/10.1152/ajpendo.90904.2008
  33. Embark HM, Setiawan I, Poppendieck S, van de Graaf SF, Boehmer C, Palmada M, Wieder T, Gerstberger R, Cohen P, Yun CC, Bindels RJ, Lang F: Regulation of the epithelial Ca2+ channel TRPV5 by the NHE regulating factor NHERF2 and the serum and glucocorticoid inducible kinase isoforms SGK1 and SGK3 expressed in Xenopus oocytes. Cell Physiol Biochem 2004, 14(4-6):203-212. https://doi.org/10.1159/000080329
  34. Zanello LP, Norman AW: Multiple molecular mechanisms of 1 alpha, 25(OH)2-vitamin D3 rapid modulation of three ion channel activities in osteoblasts. Bone 2003, 33(1):71-79. https://doi.org/10.1016/S8756-3282(03)00162-5
  35. Zhang M, Wang JJ, Chen YJ: Effects of mechanical pressure on intracellular calcium release channel and cytoskeletal structure in rabbit mandibular condylar chondrocytes. Life Sci 2006, 78(21):2480-2487. https://doi.org/10.1016/j.lfs.2005.10.043
  36. Lee GS, Jung EM, Choi KC, Oh GT, Jeung EB: Compensatory induction of the TRPV6 channel in a calbindin-D9k knockout mouse: Its regulation by 1,25-hydroxyvitamin D3. J Cell Biochem 2009, 108(5):1175-1183. https://doi.org/10.1002/jcb.22347
  37. Fernandez-Cancio M, Audi L, Carrascosa A, Toran N, Andaluz P, Esteban C, Granada ML: Vitamin D and growth hormone regulate growth hormone/insulin-like growth factor (GH-IGF) axis gene expression in human fetal epiphyseal chondrocytes. Growth Horm IGF Res 2009, 19(3):232-237. https://doi.org/10.1016/j.ghir.2008.10.004
  38. Kumar D, Lassar AB: The transcriptional activity of Sox9 in chondrocytes is regulated by RhoA signaling and actin polymerization. Mol Cell Biol 2009, 29(15):4262-4273. https://doi.org/10.1128/MCB.01779-08
  39. Akiyama H, Lyons JP, Mori-Akiyama Y, Yang X, Zhang R, Zhang Z, Deng JM, Taketo MM, Nakamura T, Behringer RR, McCrea PD, de Crombrugghe B: Interactions between Sox9 and beta-catenin control chondrocyte differentiation. Genes Dev 2004, 18(9):1072-1087. https://doi.org/10.1101/gad.1171104
  40. Kawakami Y, Rodriguez-Leon J, Izpisua Belmonte JC: The role of TGFbetas and Sox9 during limb chondrogenesis. Curr Opin Cell Biol 2006, 18(6):723-729. https://doi.org/10.1016/j.ceb.2006.10.007
  41. Tew SR, Hardingham TE: Regulation of SOX9 mRNA in human articular chondrocytes involving p38 MAPK activation and mRNA stabilization. J Biol Chem 2006, 281(51):39471-39479. https://doi.org/10.1074/jbc.M604322200
  42. Aigner T, Gebhard PM, Schmid E, Bau B, Harley V, Poschl E: SOX9 expression does not correlate with type II collagen expression in adult articular chondrocytes. Matrix Biol 2003, 22(4):363-372. https://doi.org/10.1016/S0945-053X(03)00049-0
  43. Bi W, Huang W, Whitworth DJ, Deng JM, Zhang Z, Behringer RR, de Crombrugghe B: Haploinsufficiency of Sox9 results in defective cartilage primordia and premature skeletal mineralization. Proc Natl Acad Sci U S A 2001, 98(12):6698-6703. https://doi.org/10.1073/pnas.111092198
  44. Gebhard PM, Gehrsitz A, Bau B, Soder S, Eger W, Aigner T: Quantification of expression levels of cellular differentiation markers does not support a general shift in the cellular phenotype of osteoarthritic chondrocytes. J Orthop Res 2003, 21(1):96-101. https://doi.org/10.1016/S0736-0266(02)00094-3
  45. Nijenhuis T, Hoenderop JG, van der Kemp AW, Bindels RJ: Localization and regulation of the epithelial Ca2+ channel TRPV6 in the kidney. J Am Soc Nephrol 2003, 14(11):2731-2740. https://doi.org/10.1097/01.ASN.0000094081.78893.E8
  46. Song Y, Peng X, Porta A, Takanaga H, Peng JB, Hediger MA, Fleet JC, Christakos S: Calcium transporter 1 and epithelial calcium channel messenger ribonucleic acid are differentially regulated by 1, 25 dihydroxyvitamin D3 in the intestine and kidney of mice. Endocrinology 2003, 144(9):3885-3894. https://doi.org/10.1210/en.2003-0314
  47. Haussler MR, Whitfield GK, Kaneko I, Haussler CA, Hsieh D, Hsieh JC, Jurutka PW: Molecular mechanisms of vitamin D action. Calcif Tissue Int 2013, 92(2):77-98. https://doi.org/10.1007/s00223-012-9619-0
  48. Hoenderop JG, Muller D, Van Der Kemp AW, Hartog A, Suzuki M, Ishibashi K, Imai M, Sweep F, Willems PH, Van Os CH, Bindels RJ: Calcitriol controls the epithelial calcium channel in kidney. J Am Soc Nephrol 2001, 12(7):1342-1349.
  49. Bouillon R, Van Cromphaut S, Carmeliet G: Intestinal calcium absorption: molecular vitamin D mediated mechanisms. J Cell Biochem 2003, 88(2):332-339. https://doi.org/10.1002/jcb.10360
  50. Van Cromphaut SJ, Dewerchin M, Hoenderop JG, Stockmans I, Van Herck E, Kato S, Bindels RJ, Collen D, Carmeliet P, Bouillon R, Carmeliet G: Duodenal calcium absorption in vitamin D receptor-knockout mice: functional and molecular aspects. Proc Natl Acad Sci U S A 2001, 98(23):13324-13329. https://doi.org/10.1073/pnas.231474698
  51. Wood RJ, Tchack L, Taparia S: 1,25-Dihydroxyvitamin D3 increases the expression of the CaT1 epithelial calcium channel in the Caco-2 human intestinal cell line. BMC Physiol 2001, 1:11. https://doi.org/10.1186/1472-6793-1-11
  52. Kirsch T, Swoboda B, von der Mark K: Ascorbate independent differentiation of human chondrocytes in vitro: simultaneous expression of types I and X collagen and matrix mineralization. Differentiation 1992, 52(1):89-100. https://doi.org/10.1111/j.1432-0436.1992.tb00503.x
  53. Bonen DK, Schmid TM: Elevated extracellular calcium concentrations induce type X collagen synthesis in chondrocyte cultures. J Cell Biol 1991, 115(4):1171-1178. https://doi.org/10.1083/jcb.115.4.1171
  54. Koyano Y, Hejna M, Flechtenmacher J, Schmid TM, Thonar EJ, Mollenhauer J: Collagen and proteoglycan production by bovine fetal and adult chondrocytes under low levels of calcium and zinc ions. Connect Tissue Res 1996, 34(3):213-225. https://doi.org/10.3109/03008209609000700

Cited by

  1. Risk of Osteoarthritis is Positively Associated with Vitamin D Status, but Not Bone Mineral Density, in Older Adults in the United States vol.40, pp.6, 2014, https://doi.org/10.1080/07315724.2020.1787907