DOI QR코드

DOI QR Code

Quorum Quenching Bacteria Isolated from the Sludge of a Wastewater Treatment Plant and Their Application for Controlling Biofilm Formation

  • Kim, A-Leum (Department of Biomedicinal Science and Biotechnology, Paichai University) ;
  • Park, Son-Young (Department of Biomedicinal Science and Biotechnology, Paichai University) ;
  • Lee, Chi-Ho (Department of Biomedicinal Science and Biotechnology, Paichai University) ;
  • Lee, Chung-Hak (School of Chemical and Biological Engineering, Seoul National University) ;
  • Lee, Jung-Kee (Department of Biomedicinal Science and Biotechnology, Paichai University)
  • 투고 : 2014.07.07
  • 심사 : 2014.08.10
  • 발행 : 2014.11.28

초록

Bacteria recognize changes in their population density by sensing the concentration of signal molecules, N-acyl-homoserine lactones (AHLs). AHL-mediated quorum sensing (QS) plays a key role in biofilm formation, so the interference of QS, referred to as quorum quenching (QQ), has received a great deal of attention. A QQ strategy can be applied to membrane bioreactors (MBRs) for advanced wastewater treatment to control biofouling. To isolate QQ bacteria that can inhibit biofilm formation, we isolated diverse AHL-degrading bacteria from a laboratory-scale MBR and sludge from real wastewater treatment plants. A total of 225 AHL-degrading bacteria were isolated from the sludge sample by enrichment culture. Afipia sp., Acinetobacter sp. and Streptococcus sp. strains produced the intracellular QQ enzyme, whereas Pseudomonas sp., Micrococcus sp. and Staphylococcus sp. produced the extracellular QQ enzyme. In case of Microbacterium sp. and Rhodococcus sp., AHL-degrading activities were detected in the whole-cell assay and Rhodococcus sp. showed AHL-degrading activity in cell-free lysate as well. There has been no report for AHL-degrading capability in the case of Streptococcus sp. and Afipia sp. strains. Finally, inhibition of biofilm formation by isolated QQ bacteria or enzymes was observed on glass slides and 96-well microtiter plates using crystal violet staining. QQ strains or enzymes not only inhibited initial biofilm development but also reduced established biofilms.

키워드

참고문헌

  1. Bokhove M, Nadal Jimenez P, Quax WJ, Dijkstra BW. 2010. The quorum-quenching N-acyl homoserine lactone acylase PvdQ is an Ntn-hydrolase with an unusual substrate-binding pocket. Proc. Natl. Acad. Sci. USA 107: 686-691. https://doi.org/10.1073/pnas.0911839107
  2. Cheong SC, Lee CH, Moon YH, Oh HS, Kim SR, Lee SH, et al. 2013. Isolation and identification of indigenous quorum quenching bacteria, Pseudomonas sp. 1A1, for biofouling control in MBR. Ind. Eng. Chem. Res. 31: 10554-10560.
  3. Chowdhary PK, Keshavan N, Nguyen HQ, Peterson JA, Gonzalez JE, Haines DC. 2007. Bacillus megaterium CYP102A1 oxidation of acyl homoserine lactones and acyl homoserines. Biochemistry 46: 14429-14437. https://doi.org/10.1021/bi701945j
  4. Cook DM, Li PL, Ruchaud F, Padden S, Farrand SK. 1997. Ti plasmid conjugation is independent of vir: reconstitution of the tra functions from pTiC58 as a binary system. J. Bacteriol. 179: 1291-1297. https://doi.org/10.1128/jb.179.4.1291-1297.1997
  5. Davies DG, Parsek MR, Pearson JP, Iglewski BH, Costerton JW, Greenberg EP. 1998. The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science 280: 295-298. https://doi.org/10.1126/science.280.5361.295
  6. Dickschat JS. 2010. Quorum sensing and bacterial biofilms. Nat. Prod. Rep. 27: 343-369. https://doi.org/10.1039/b804469b
  7. Dong YH, Wang LH, Xu JL, Zhang HB, Zhang XF, Zhang LH. 2001. Quenching quorum-sensing-dependent bacterial infection by an N-acyl homoserine lactonase. Nature 411: 813-817. https://doi.org/10.1038/35081101
  8. Eberhard A, Burlingame AL, Eberhard C, Kenyon GL, Nealson KH, Oppenheimer NJ. 1981. Structural identification of autoinducer of Photobacterium fischeri luciferase. Biochemistry 20: 2444-2449. https://doi.org/10.1021/bi00512a013
  9. Flemming HC, Neu TR, Wozniak DJ. 2007. The EPS matrix: the "house of biofilm cells". J. Bacteriol. 189: 7945-7947. https://doi.org/10.1128/JB.00858-07
  10. Fuqua WC, Winans SC, Greenberg EP. 1994. Quorum sensing in bacteria: the LuxR-LuxI family of cell densityresponsive transcriptional regulators. J. Bacteriol. 176: 269-275. https://doi.org/10.1128/jb.176.2.269-275.1994
  11. Fux CA, Stoodley P, Hall-Stoodley L, Costerton JW. 2003. Bacterial biofilms: a diagnostic and therapeutic challenge. Expert Rev. Anti Infect. Ther. 1: 667-683. https://doi.org/10.1586/14787210.1.4.667
  12. Huang JJ, Petersen A, Whiteley M, Leadbetter JR. 2006. Identification of QuiP, the product of gene PA1032, as the second acyl-homoserine lactone acylase of Pseudomonas aeruginosa PAO1. Appl. Environ. Microbiol. 72: 1190-1197. https://doi.org/10.1128/AEM.72.2.1190-1197.2006
  13. Kang BR, Lee JH, Ko SJ, Lee YH, Cha JS, Cho BH, Kim YC. 2004. Degradation of acyl-homoserine lactone molecules by Acinetobacter sp. strain C1010. Can. J. Microbiol. 50: 935-941. https://doi.org/10.1139/w04-083
  14. Latifi A, Winson MK, Foglino M, Bycroft BW, Stewart GS, Lazdunski A, Williams P. 1995. Multiple homologues of LuxR and LuxI control expression of virulence determinants and secondary metabolites through quorum sensing in Pseudomonas aeruginosa PAO1. Mol. Microbiol. 17: 333-343. https://doi.org/10.1111/j.1365-2958.1995.mmi_17020333.x
  15. Leadbetter JR, Greenberg EP. 2000. Metabolism of acylhomoserine lactone quorum-sensing signals by Variovorax paradoxus. J. Bacteriol. 182: 6921-6926. https://doi.org/10.1128/JB.182.24.6921-6926.2000
  16. Lee SJ, Park SY, Lee JJ, Yum DY, Koo BT, Lee JK. 2002. Genes encoding the N-acyl homoserine lactone-degrading enzyme are widespread in many subspecies of Bacillus thuringiensis. Appl. Environ. Microbiol. 68: 3919-3924. https://doi.org/10.1128/AEM.68.8.3919-3924.2002
  17. Lin YH, Xu JL, Hu J, Wang LH, Ong SL, Leadbetter JR, Zhang LH. 2003. Acyl-homoserine lactone acylase from Ralstonia strain XJ12B represents a novel and potent class of quorum-quenching enzymes. Mol. Microbiol. 47: 849-860. https://doi.org/10.1046/j.1365-2958.2003.03351.x
  18. Ochiai S, Morohoshi T, Kurabeishi A, Shinozaki M, Fujita H, Sawada I, Ikeda T. 2013. Production and degradation of N-acylhomoserine lactone quorum sensing signal molecules in bacteria isolated from activated sludge. Biosci. Biotechnol. Biochem. 77: 2436-2440. https://doi.org/10.1271/bbb.130553
  19. Oh HS, Yeon KM, Yang CS, Kim SR, Lee CH, Park SY, et al. 2012. Control of membrane biofouling in MBR for wastewater treatment by quorum quenching bacteria encapsulated in microporous membrane. Environ. Sci. Technol. 46: 4877-4884. https://doi.org/10.1021/es204312u
  20. O'Toole GA, Kolter R. 1998. Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: a genetic analysis. Mol. Microbiol. 28: 449-461. https://doi.org/10.1046/j.1365-2958.1998.00797.x
  21. Park SY, Hwang BJ, Shin MH, Kim JA, Kim HK, Lee JK. 2006. N-Acylhomoserine lactonase-producing Rhodococcus spp. with different AHL-degrading activities. FEMS Microbiol. Lett. 261: 102-108. https://doi.org/10.1111/j.1574-6968.2006.00336.x
  22. Park SY, Lee SJ, Oh TK, Oh JW, Koo BT, Yum DY, Lee JK. 2003. AhlD, an N-acylhomoserine lactonase in Arthrobacter sp., and predicted homologues in other bacteria. Microbiology 149: 1541-1550. https://doi.org/10.1099/mic.0.26269-0
  23. Pearson JP, Gray KM, Passador L, Tucker KD, Eberhard A, Iglewski BH, Greenberg EP. 1994. Structure of the autoinducer required for expression of Pseudomonas aeruginosa virulence genes. Proc. Natl. Acad. Sci. USA 91: 197-201. https://doi.org/10.1073/pnas.91.1.197
  24. Rasmussen TB, Givskov M. 2006. Quorum sensing inhibitors: a bargain of effects. Microbiology 152: 895-904. https://doi.org/10.1099/mic.0.28601-0
  25. Salmond GP, Bycroft BW, Stewart GS, Williams P. 1995. The bacterial 'enigma': cracking the code of cell-cell communication. Mol. Microbiol. 16: 615-624. https://doi.org/10.1111/j.1365-2958.1995.tb02424.x
  26. Shaw PD, Ping G, Daly SL, Cha C, Cronan JE Jr, Rinehart KL, Farrand SK. 1997. Detecting and characterizing N-acylhomoserine lactone signal molecules by thin-layer chromatography. Proc. Natl. Acad. Sci. USA 94: 6036-6041. https://doi.org/10.1073/pnas.94.12.6036
  27. Sintim HO, Smith JA, Wang J, Nakayama S, Yan L. 2010. Paradigm shift in discovering next-generation anti-infective agents: targeting quorum sensing, c-di-GMP signaling and biofilm formation in bacteria with small molecules. Future Med. Chem. 2: 1005-1035. https://doi.org/10.4155/fmc.10.185
  28. Stewart PS, Costerton JW. 2001. Antibiotic resistance of bacteria in biofilms. Lancet 358: 135-138. https://doi.org/10.1016/S0140-6736(01)05321-1
  29. Throup JP, Camara M, Briggs GS, Winson MK, Chhabra SR, Bycroft BW, et al. 1995. Characterisation of the yenI/yenR locus from Yersinia enterocolitica mediating the synthesis of two N-acylhomoserine lactone signal molecules. Mol. Microbiol. 17: 345-356. https://doi.org/10.1111/j.1365-2958.1995.mmi_17020345.x
  30. Uroz S, Chhabra SR, Camara M, Williams P, Oger P, Dessaux Y. 2005. N-Acylhomoserine lactone quorum-sensing molecules are modified and degraded by Rhodococcus erythropolis W2 by both amidolytic and novel oxidoreductase activities. Microbiology 151: 3313-3322. https://doi.org/10.1099/mic.0.27961-0
  31. Uroz S, Oger PM, Chapelle E, Adeline MT, Faure D, Dessaux Y. 2008. A Rhodococcus qsdA-encoded enzyme defines a novel class of large-spectrum quorum-quenching lactonases. Appl. Environ. Microbiol. 74: 1357-1366. https://doi.org/10.1128/AEM.02014-07
  32. Wang LH, Dong YH, Zhang LH. 2008. Quorum quenching : impact and mechanisms, pp. 379-392. In Winans SC, Bassler BL (eds.). Chemical Communication Among Bacteria. ASM Press, USA.
  33. Wang WZ, Morohoshi T, Someya N, Ikeda T. 2012. Diversity and distribution of N-acylhomoserine lactone (AHL)-degrading activity and AHL-lactonase (AiiM) in genus Microbacterium. Microbes Environ. 27: 330-333. https://doi.org/10.1264/jsme2.ME11341
  34. Whitehead NA, Barnard AM, Slater H, Simpson NJ, Salmond GP. 2001. Quorum-sensing in gram-negative bacteria. FEMS Microbiol Rev. 25: 365-404. https://doi.org/10.1111/j.1574-6976.2001.tb00583.x
  35. Whitehead NA, Welch M, Salmond GP. 2001. Silencing the majority. Nat. Biotechnol. 19: 735-736. https://doi.org/10.1038/90780
  36. Xiong Y, Liu Y. 2010. Biological control of microbial attachment: a promising alternative for mitigating membrane biofouling. Appl. Microbiol. Biotechnol. 86: 825-837. https://doi.org/10.1007/s00253-010-2463-0
  37. Yeon KM, Cheong WS, Oh HS, Lee WN, Hwang BK, Lee CH, et al. 2009. Quorum sensing: a new biofouling control paradigm in a membrane bioreactor for advanced wastewater treatment. Environ. Sci. Technol. 43: 380-385. https://doi.org/10.1021/es8019275
  38. Zhang L, Murphy PJ, Kerr A, Tate ME. 1993. Agrobacterium conjugation and gene regulation by N-acyl-L-homoserine lactones. Nature 362: 446-448. https://doi.org/10.1038/362446a0

피인용 문헌

  1. Perspectives for microbial community composition in anaerobic digestion: from abundance and activity to connectivity vol.18, pp.9, 2014, https://doi.org/10.1111/1462-2920.13437
  2. Isolation and characterization of seven quorum quenching bacteria for biofouling control in MBR vol.19, pp.4, 2014, https://doi.org/10.1007/s10098-016-1294-9
  3. Exploring the potential of curcumin for control of N-acyl homoserine lactone-mediated biofouling in membrane bioreactors for wastewater treatment vol.7, pp.27, 2017, https://doi.org/10.1039/c6ra28032c
  4. Marine Actinobacteria as a source of compounds for phytopathogen control: An integrative metabolic-profiling / bioactivity and taxonomical approach vol.12, pp.2, 2014, https://doi.org/10.1371/journal.pone.0170148
  5. The LuxS/AI-2 system of Streptococcus suis vol.102, pp.17, 2018, https://doi.org/10.1007/s00253-018-9170-7
  6. High-performing antifouling bacterial consortium for submerged membrane bioreactor treating synthetic wastewater vol.15, pp.2, 2014, https://doi.org/10.1007/s13762-017-1392-1
  7. Sorption characteristics of N-acyl homserine lactones as signal molecules in natural soils based on the analysis of kinetics and isotherms vol.8, pp.17, 2014, https://doi.org/10.1039/c7ra10421a
  8. Multiple Quorum Quenching Enzymes Are Active in the Nosocomial Pathogen Acinetobacter baumannii ATCC17978 vol.8, pp.None, 2014, https://doi.org/10.3389/fcimb.2018.00310
  9. Quorum Sensing versus Quenching Bacterial Isolates Obtained from MBR Plants Treating Leachates from Municipal Solid Waste vol.15, pp.5, 2014, https://doi.org/10.3390/ijerph15051019
  10. Identification of N‐acyl homoserine lactone‐degrading bacteria isolated from rainbow trout (Oncorhynchus mykiss) vol.125, pp.2, 2014, https://doi.org/10.1111/jam.13891
  11. Discovering, Characterizing, and Applying Acyl Homoserine Lactone-Quenching Enzymes to Mitigate Microbe-Associated Problems Under Saline Conditions vol.10, pp.None, 2019, https://doi.org/10.3389/fmicb.2019.00823
  12. Structure and predictive functional profiling of microbial communities in two biotrickling filters treated with continuous/discontinuous waste gases vol.9, pp.1, 2014, https://doi.org/10.1186/s13568-018-0726-9
  13. Quorum quenching for effective control of biofouling in membrane bioreactor: A comprehensive review of approaches, applications, and challenges vol.24, pp.4, 2014, https://doi.org/10.4491/eer.2018.380
  14. Phomopsis tersa as Inhibitor of Quorum Sensing System and Biofilm Forming Ability of Pseudomonas aeruginosa vol.60, pp.1, 2014, https://doi.org/10.1007/s12088-019-00840-y
  15. Discrepant roles of a quorum quenching bacterium (Rhodococcus sp. BH4) in growing dual-species biofilms vol.713, pp.None, 2020, https://doi.org/10.1016/j.scitotenv.2019.136402
  16. Preparation of a mesoporous silica quorum quenching medium for wastewater treatment using a membrane bioreactor vol.36, pp.4, 2014, https://doi.org/10.1080/08927014.2020.1749601
  17. Inhibition of Microbial Quorum Sensing Mediated Virulence Factors by Pestalotiopsis sydowiana vol.30, pp.4, 2014, https://doi.org/10.4014/jmb.1907.07030
  18. Identification of a Second Type of AHL-Lactonase from Rhodococcus sp. BH4, belonging to the α/β Hydrolase Superfamily vol.30, pp.6, 2014, https://doi.org/10.4014/jmb.2001.01006
  19. Quorum‐quenching endophytic bacteria inhibit disease caused by Pseudomonas syringae pv. syringae in Citrus cultivars vol.60, pp.9, 2014, https://doi.org/10.1002/jobm.202000038
  20. Quorum Sensing Inhibition or Quenching in Acinetobacter baumannii: The Novel Therapeutic Strategies for New Drug Development vol.12, pp.None, 2021, https://doi.org/10.3389/fmicb.2021.558003
  21. Response of aerobic sludge to AHL-mediated QS: Granulation, simultaneous nitrogen and phosphorus removal performance vol.32, pp.11, 2014, https://doi.org/10.1016/j.cclet.2021.04.061