References
- Bligh EG, Dyer WJ. 1959. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37: 911-917. https://doi.org/10.1139/o59-099
- Brennan L, Owende P. 2010. Biofuels from microalgae - A review of technologies for production, processing, and extractions of biofuels and co-products. Renew. Sustain. Energ. Rev. 14: 557-577. https://doi.org/10.1016/j.rser.2009.10.009
- Cheirsilp B, Torpee S. 2012. Enhanced growth and lipid production of microalgae under mixotrophic culture condition: effect of light intensity, glucose concentration and fed-batch cultivation. Bioresour. Technol. 110: 510-516. https://doi.org/10.1016/j.biortech.2012.01.125
- Chisti Y. 2007. Biodiesel from microalgae. Biotechnol. Adv. 25: 294-306. https://doi.org/10.1016/j.biotechadv.2007.02.001
- Chrismadha T, Borowitzka MA. 1994. Effect of cell density and irradiance on growth, proximate composition and eicosapentaenoic acid production of Phaeodactylum tricornutum grown in a tubular photobioreactor. J. Appl. Phycol. 6: 66-74.
- Christenson LB, Sims RC. 2012. Rotating algal biofilm reactor and spool harvester for wastewater treatment with biofuels by-products. Biotechnol. Bioeng. 109: 1674-1684. https://doi.org/10.1002/bit.24451
- Grima EM, Belarbi E-H, Fernandez FGA, Medina AR, Chisti Y. 2003. Recovery of microalgal biomass and metabolites: process options and economics. Biotechnol. Adv. 20: 491-515. https://doi.org/10.1016/S0734-9750(02)00050-2
- Gudin C, Thepenier C. 1986. Bioconversion of solar energy into organic chemicals by microalgae. Adv. Biotechnol. Process. 6: 73-110.
- Guiheneuf F, Mimouni V, Ulmann L, Tremblin G. 2009. Combined effects of irradiance level and carbon source on fatty acid and lipid class composition in the microalga Pavlova lutheri commonly used in mariculture. J. Exp. Mar. Biol. Ecol. 369: 136-143. https://doi.org/10.1016/j.jembe.2008.11.009
-
Ho SH, Chen CY, Chang JS. 2012. Effect of light intensity and nitrogen starvation on
$CO_2$ fixation and lipid/carbohydrate production of an indigenous microalga Scenedesmus obliquus CNW-N. Bioresour. Technol. 113: 244-252. https://doi.org/10.1016/j.biortech.2011.11.133 - Hoffmann JP. 1998. Wastewater treatment with suspended and nonsuspended algae. J. Phycol. 34: 757-763. https://doi.org/10.1046/j.1529-8817.1998.340757.x
- Johnson MB, Wen Z. 2010. Development of an attached microalgal growth system for biofuel production. Appl. Microbiol. Biotechnol. 85: 525-534. https://doi.org/10.1007/s00253-009-2133-2
- Knothe G. 2008. "Designer" biodiesel: optimizing fatty ester composition to improve fuel properties. Energy Fuels 22: 1358-1364. https://doi.org/10.1021/ef700639e
- Lee S-J, Kim S-B, Kim J-E, Kwon G-S, Yoon B-D, Oh H-M. 1998. Effects of harvesting method and growth stage on the flocculation of the green alga Botryococcus braunii. Lett. Appl. Microbiol. 27: 14-18. https://doi.org/10.1046/j.1472-765X.1998.00375.x
- Lepage G, Roy CC. 1984. Improved recovery of fatty acid through direct transesterification without prior extraction or purification. J. Lipid Res. 25: 1391-1396.
- Li Y, Horsman M, Wu N, Lan CQ, Dubois-Calero N. 2008. Biofuels from microalgae. Biotechnol. Prog. 24: 815-820.
- Liu T, Wang J, Hu Q, Cheng P, Ji B, Liu J, et al. 2012. Attached cultivation technology of microalgae for efficient biomass feedstock production. Bioresour. Technol. 127: 216-222.
- Lv JM, Cheng LH, Xu XH, Zhang L, Chen HL. 2010. Enhanced lipid production of Chlorella vulgaris by adjustment of cultivation conditions. Bioresour. Technol. 101: 6797-6804. https://doi.org/10.1016/j.biortech.2010.03.120
- Miao X, Wu Q. 2006. Biodiesel production from heterotrophic microalgal oil. Bioresour. Technol. 97: 841-846. https://doi.org/10.1016/j.biortech.2005.04.008
- Ozkan A, Kinney K, Katz L, Berberoglu H. 2012. Reduction of water and energy requirement of algae cultivation using an algae biofilm photobioreactor. Bioresour. Technol. 114: 542-548. https://doi.org/10.1016/j.biortech.2012.03.055
- Park JB, Craggs RJ, Shilton AN. 2011. Wastewater treatment high rate algal ponds for biofuel production. Bioresour. Technol. 102: 35-42. https://doi.org/10.1016/j.biortech.2010.06.158
- Pulz O. 2001. Photobioreactors: production systems for phototrophic microorganisms. Appl. Microbiol. Biotechnol. 57: 287-293. https://doi.org/10.1007/s002530100702
- Suh IS, Lee SB. 2003. A light distribution model for an internally radiating photobioreactor. Biotechnol. Bioeng. 82: 180-189. https://doi.org/10.1002/bit.10558
- Sukenik A. 1991. Ecophysiological considerations in the optimization of eicosapentaenoic acid production by Nannochloropsis sp. (Eustigmatophyceae). Bioresour. Technol. 35: 263-269. https://doi.org/10.1016/0960-8524(91)90123-2
- Thompson GA Jr. 1996. Lipids and membrane function in green algae. Biochim. Biophys. Acta 1302: 17-45. https://doi.org/10.1016/0005-2760(96)00045-8
- Wilkie AC, Mulbry WW. 2002. Recovery of dairy manure nutrients by benthic freshwater algae. Bioresour. Technol. 84: 81-91. https://doi.org/10.1016/S0960-8524(02)00003-2
- Xu N, Zhang X, Fan X, Han L, Zeng C. 2001. Effects of nitrogen source and concentration on growth rate and fatty acid composition of Ellipsoidion sp. (Eustigmatophyta). J. Appl. Phycol. 13: 463-469. https://doi.org/10.1023/A:1012537219198
Cited by
- Polypropylene Bundle Attached Multilayered Stigeoclonium Biofilms Cultivated in Untreated Sewage Generate High Biomass and Lipid Productivity vol.25, pp.9, 2014, https://doi.org/10.4014/jmb.1501.01033
- Fast Determination of Multiple-Reaction Intermediates for Long-Chain Dicarboxylic Acid Biotransformation by Gas Chromatography-Flame Ionization Detector vol.25, pp.5, 2014, https://doi.org/10.4014/jmb.1502.02026
- Impact of Microalgae-Bacteria Interactions on the Production of Algal Biomass and Associated Compounds vol.14, pp.5, 2014, https://doi.org/10.3390/md14050100
- Algal biofilm reactors for integrated wastewater treatment and biofuel production: A review vol.287, pp.None, 2016, https://doi.org/10.1016/j.cej.2015.11.062
- Seasonal Assessment of Biomass and Fatty Acid Productivity by Tetraselmis sp. in the Ocean Using Semi-Permeable Membrane Photobioreactors vol.26, pp.6, 2016, https://doi.org/10.4014/jmb.1601.01031
- Enhancing Photon Utilization Efficiency for Astaxanthin Production from Haematococcus lacustris Using a Split-Column Photobioreactor vol.26, pp.7, 2014, https://doi.org/10.4014/jmb.1601.01082
- Microalgae-based advanced municipal wastewater treatment for reuse in water bodies vol.101, pp.7, 2017, https://doi.org/10.1007/s00253-017-8184-x
- Periphyton effects on bacterial assemblages and harmful cyanobacterial blooms in a eutrophic freshwater lake: a mesocosm study vol.7, pp.None, 2014, https://doi.org/10.1038/s41598-017-08083-x
- An innovative approach to attached cultivation of Chlorella vulgaris using different materials vol.25, pp.20, 2014, https://doi.org/10.1007/s11356-018-2177-x
- Mixotrophic Microalgae Biofilm: A Novel Algae Cultivation Strategy for Improved Productivity and Cost-efficiency of Biofuel Feedstock Production vol.8, pp.None, 2014, https://doi.org/10.1038/s41598-018-31016-1
- Microalgal biofilms: A further step over current microalgal cultivation techniques vol.651, pp.2, 2019, https://doi.org/10.1016/j.scitotenv.2018.09.355
- Impact of substrate material on algal biofilm biomass growth vol.26, pp.7, 2019, https://doi.org/10.1007/s11356-019-04148-8
- Attached cultivation of Scenedesmus sp. LX1 on selected solids and the effect of surface properties on attachment vol.13, pp.4, 2014, https://doi.org/10.1007/s11783-019-1141-4
- Biotreatment of Poultry Waste Coupled with Biodiesel Production Using Suspended and Attached Growth Microalgal-Based Systems vol.12, pp.12, 2014, https://doi.org/10.3390/su12125024
- Innovative hybrid system for wastewater treatment: High-rate algal ponds for effluent treatment and biofilm reactor for biomass production and harvesting vol.274, pp.None, 2020, https://doi.org/10.1016/j.jenvman.2020.111183
- Enclosed “non-conventional” photobioreactors for microalga production: A review vol.52, pp.None, 2014, https://doi.org/10.1016/j.algal.2020.102107
- Outdoor vertical farming on textile substrates vol.1031, pp.None, 2021, https://doi.org/10.1088/1757-899x/1031/1/012020
- Feasibility of Utilizing Wastewaters for Large-Scale Microalgal Cultivation and Biofuel Productions Using Hydrothermal Liquefaction Technique: A Comprehensive Review vol.9, pp.None, 2021, https://doi.org/10.3389/fbioe.2021.651138
- Immobilising Microalgae and Cyanobacteria as Biocomposites: New Opportunities to Intensify Algae Biotechnology and Bioprocessing vol.14, pp.9, 2014, https://doi.org/10.3390/en14092566
- Year-Round Cultivation of Tetraselmis sp. for Essential Lipid Production in a Semi-Open Raceway System vol.19, pp.6, 2021, https://doi.org/10.3390/md19060314
- Technologies for improving microalgae biomass production coupled to effluent treatment: A life cycle approach vol.57, pp.None, 2021, https://doi.org/10.1016/j.algal.2021.102346
- Pollution prevention and waste phycoremediation by algal-based wastewater treatment technologies: The applications of high-rate algal ponds (HRAPs) and algal turf scrubber (ATS) vol.296, pp.None, 2014, https://doi.org/10.1016/j.jenvman.2021.113193