DOI QR코드

DOI QR Code

Biosynthesis of Pinocembrin from Glucose Using Engineered Escherichia coli

  • Kim, Bong Gyu (Department of Forest Resources, Gyeongnam National University of Science and Technology) ;
  • Lee, Hyejin (Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University) ;
  • Ahn, Joong-Hoon (Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University)
  • 투고 : 2014.06.05
  • 심사 : 2014.07.28
  • 발행 : 2014.11.28

초록

Pinocembrin is a flavonoid that exhibits diverse biological properties. Although the major source of pinocembrin is propolis, it can be synthesized biologically using microorganisms such as Escherichia coli, which has been used to synthesize diverse natural compounds. Pinocembrin is synthesized from phenylalanine by the action of three enzymes; phenylalanine ammonia lyase (PAL), 4-coumarate:CoA ligase (4CL), and chalcone synthase (CHS). In order to synthesize pinocembrin from glucose in Escherichia coli, the PAL, 4CL, and CHS genes from three different plants were introduced into an E. coli strain. Next, we tested the different constructs containing 4CL and CHS. In addition, the malonyl-CoA level was increased by overexpressing acetyl-CoA carboxylase. Through these strategies, a high production yield (97 mg/l) of pinocembrin was achieved.

키워드

참고문헌

  1. Aboushoer MI, Fathy HM, Abdel-Kader MS, Goetz G, Omara AA. 2010. Terpenes and flavonoids from an Egyptian collection of Cleome droserifolia. Nat. Prod. Res. 24: 687-696. https://doi.org/10.1080/14786410903292433
  2. Austin MB, Noel JP. 2003. The chalcone synthase superfamily of type III polyketide synthases. Nat. Prod. Rep. 20: 79-110. https://doi.org/10.1039/b100917f
  3. Cochrane FC, Davin LB, Lewis NG. 2004. The Arabidopsis phenylalanine ammonia lyase gene family: kinetic characterization of the four PAL isoform. Phytochemistry 65: 1557-1564. https://doi.org/10.1016/j.phytochem.2004.05.006
  4. Dixon RA, Paiva NL. 1995. Stress-induced phenylpropanoid metabolism. Plant Cell 7: 1085-1097. https://doi.org/10.1105/tpc.7.7.1085
  5. Hamberger B, Hahlbrock K. 2004. The 4-coumarate:CoA ligase gene family in Arabidopsis thaliana comprises one rare, sinapate-activating and three commonly occurring isoenzymes. Proc. Natl. Acad. Sci. USA 101: 2209-2214. https://doi.org/10.1073/pnas.0307307101
  6. Houghton PJ, Woldemariam TZ, Davey W, Basar A, Lau C. 1995. Quantitation of the pinocembrin content of propolis by densitomety and high performance liquid chromatography. Phytochem. Anal. 6: 207-210. https://doi.org/10.1002/pca.2800060406
  7. Hwang EI, Kaneko M, Ohnishi Y, Horinouchi S. 2003. Production of plant-specific flavanoes by Escherichia coli containing an artificial gene cluster. Appl. Environ. Microbiol. 69: 2699-2707. https://doi.org/10.1128/AEM.69.5.2699-2706.2003
  8. Jangaard NO. 1974. The characterization of phenylalanine ammonia-lyase from several plant species. Phytochemistry 13: 1765-1768. https://doi.org/10.1016/0031-9422(74)85086-7
  9. Jaganath IB, Crozier A. 2010. Dietary Flavonoids and Phenolic Compound in Plant Phenolics and Human Health. Fraga CG (ed.). John Wiley & Sons, Hoboken, New Jersey.
  10. Kim B-G, Lee E-R, Ahn J-H. 2012. Analysis of flavonoid contents and expression of flavonoid biosynthetic genes in Populus euramericana Guinier in response to abiotic stress. J. Kor. Soc. Appl. Biol. Chem. 55: 141-145.
  11. Kim BG, Kim HJ, Ahn J-H. 2012. Production of bioactive flavonol rhamnosides by expression of plant genes in Escherichia coli. J. Agric. Food Chem. 60: 11143-11148. https://doi.org/10.1021/jf302123c
  12. Kim MJ, Kim B-G, Ahn J-H. 2013. Biosynthesis of bioactive O-methylated flavonoids in Escherichia coli. Appl. Microbiol. Biotechnol. 97: 7195-7204. https://doi.org/10.1007/s00253-013-5020-9
  13. Lee Y-J, Jeon Y, Lee JS, Kim B-G, Lee CH, Ahn J-H. 2007. Enzymatic synthesis of phenolic CoAs using 4-coumarate: coenzyme A ligase (4CL) from rice. Bull. Kor. Chem. Soc. 28: 365-366. https://doi.org/10.5012/bkcs.2007.28.3.365
  14. Leonard E, Lim H-K, Saw P-N, Koffas MAG. 2007. Engineering central metabolic pathways for high-level flavonoid production in Escherichia coli. Appl. Environ. Microbiol. 73: 3877-3886. https://doi.org/10.1128/AEM.00200-07
  15. Leonard E, Yan Y, Fowler Z, Li Z, Kim C-C, Lim K-H, Koffas MAG. 2008. Strain improvement of recombinant Escherichia coli for efficient production of plant flavonoids. Mol. Pharm. 5: 257-265. https://doi.org/10.1021/mp7001472
  16. Lim CF, Fowler ZL, Hueller T, Schaffer S, Koffas MA. 2011. High-yield resveratrol production in engineered Escherichia coli. Appl. Environ. Microbiol. 77: 3451-3460. https://doi.org/10.1128/AEM.02186-10
  17. Liu R, Wu C-X, Zhou D, Yang F, Tian S, Zhang L, et al. 2012. Pinocembrin protects against $\beta$-amyloid-induced toxicity in neurons through inhibiting receptor for advanced glycation end products (RAGE)-independent signaling pathways and regulating mitochondria-mediated apoptosis. BMC Med. 10: 105. https://doi.org/10.1186/1741-7015-10-105
  18. Miyahisa I, Funa N, Ohnishi Y, Martens S, Moriguchi T, Horinouchi S. 2006. Combinatorial biosynthesis of flavones and flavonols in Escherichia coli. Appl. Microbiol. Biotechnol. 71: 53-58. https://doi.org/10.1007/s00253-005-0116-5
  19. Miyahisa I, Kaneko M, Funa N, Kawasaki H, Kojima H, Ohnishi Y, Horinouchi S. 2005. Efficient production of (2S)- flavanones by Escherichia coli containing an artificial biosynthetic gene cluster. Appl. Microbiol. Biotechnol. 68: 498-504. https://doi.org/10.1007/s00253-005-1916-3
  20. Park SR, Ahn MS, Han AR, Park JW, Yoon YJ. 2011. Enhanced flavonoid production in Streptomyces venezuelae via metabolic engineering. J. Microbiol. Biotechnol. 21: 1143-1146. https://doi.org/10.4014/jmb.1108.08012
  21. Peng L, Yang S, Cheng YJ, Chen F, Pan S, Fan G. 2012. Antifungal activity and action mode of pinocembrin from propolis against Penicillium italicum. Food Sci. Biotechnol. 21: 1533-1539. https://doi.org/10.1007/s10068-012-0204-0
  22. Rasul A, Millimouno FM, Eltayb WA, Ali M, Li J, Li X. 2013. Pinocembrin: a novel natural compound with versatile pharmacological and biological activities. Biomed. Res. Int. 2013: 1.
  23. Rösler J, Krekel F, Amrhein N, Schmid J. 1997. Maize phenylalanine ammonia-lyase has tyrosine ammonia-lyase activity. Plant Physiol. 113: 175-179. https://doi.org/10.1104/pp.113.1.175
  24. Santos CNS, Koffas M, Stephanopoulos G. 2011. Optimization of a heterologous pathway for the production of flavonoids from glucose. Metab. Eng. 13: 392-400. https://doi.org/10.1016/j.ymben.2011.02.002
  25. Vogt T. 2010. Phenylpropanoid biosynthesis. Mol. Plant 3: 2-20. https://doi.org/10.1093/mp/ssp106
  26. Weston RJ, Mitchella KR, Allen KL. 1999 Antibacterial phenolic components of New Zealand manuka honey. Food Chem. 64: 295-301. https://doi.org/10.1016/S0308-8146(98)00100-9
  27. Winkel-Shirley B. 2001. Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiol. 126: 485-493. https://doi.org/10.1104/pp.126.2.485
  28. Wu J, Du G, Zhou J, Chen J. 2013. Metabolic engineering of Escherichia coli for (2S)-pincocembrin production from glucose by a modular metabolic strategy. Metab. Eng. 16: 48-55. https://doi.org/10.1016/j.ymben.2012.11.009
  29. Yan Y, Kohli A, Koffas MAG. 2005. Biosynthesis of natural flavanones in Saccharomyces cerevisiae. Appl. Environ. Microbiol. 71: 5610-5613. https://doi.org/10.1128/AEM.71.9.5610-5613.2005
  30. Yang N, Qin S, Wang M, Chen B, Yuan N, Fang Y, et al. 2013. Pinocembrin, a major flavonoid in propolis, improves the biological functions of EPCs derived from rat bone marrow through the PI3K-eNOS-NO signaling pathway. Cytotechnology 65: 541-551. https://doi.org/10.1007/s10616-012-9502-x
  31. Yenjai C, Wanich S, Pitchuanchom S, Sripanidkulchai B. 2009. Structural modification of 5,7-dimethoxyflavone from Kaempferia parviflora and biological activities. Arch. Pharm. Res. 32: 1179-1184. https://doi.org/10.1007/s12272-009-1900-z

피인용 문헌

  1. Phenylalanine ammonia-lyase, a key component used for phenylpropanoids production by metabolic engineering vol.5, pp.77, 2014, https://doi.org/10.1039/c5ra08196c
  2. Transcriptome-enabled discovery and functional characterization of enzymes related to ( 2S )-pinocembrin biosynthesis from Ornithogalum caudatum and their application for metabolic engineering vol.15, pp.None, 2014, https://doi.org/10.1186/s12934-016-0424-8
  3. Pinocembrin–Lecithin Complex: Characterization, Solubilization, and Antioxidant Activities vol.8, pp.2, 2014, https://doi.org/10.3390/biom8020041
  4. Modulation of the central carbon metabolism of Corynebacterium glutamicum improves malonyl‐CoA availability and increases plant polyphenol synthesis vol.116, pp.6, 2019, https://doi.org/10.1002/bit.26939
  5. Advances in Biosynthesis, Pharmacology, and Pharmacokinetics of Pinocembrin, a Promising Natural Small-Molecule Drug vol.24, pp.12, 2014, https://doi.org/10.3390/molecules24122323
  6. Synthesis of Three Bioactive Aromatic Compounds by Introducing Polyketide Synthase Genes into Engineered Escherichia coli vol.67, pp.31, 2019, https://doi.org/10.1021/acs.jafc.9b03439
  7. Engineering Escherichia coli towards de novo production of gatekeeper (2 S )-flavanones: naringenin, pinocembrin, eriodictyol and homoeriodictyol vol.5, pp.1, 2014, https://doi.org/10.1093/synbio/ysaa012
  8. Synthesis of acridone derivatives via heterologous expression of a plant type III polyketide synthase in Escherichia coli vol.19, pp.None, 2014, https://doi.org/10.1186/s12934-020-01331-2
  9. Specialized Metabolites from Ribosome Engineered Strains of Streptomyces clavuligerus vol.11, pp.4, 2014, https://doi.org/10.3390/metabo11040239
  10. Optimum chalcone synthase for flavonoid biosynthesis in microorganisms vol.41, pp.8, 2014, https://doi.org/10.1080/07388551.2021.1922350