참고문헌
- Aboushoer MI, Fathy HM, Abdel-Kader MS, Goetz G, Omara AA. 2010. Terpenes and flavonoids from an Egyptian collection of Cleome droserifolia. Nat. Prod. Res. 24: 687-696. https://doi.org/10.1080/14786410903292433
- Austin MB, Noel JP. 2003. The chalcone synthase superfamily of type III polyketide synthases. Nat. Prod. Rep. 20: 79-110. https://doi.org/10.1039/b100917f
- Cochrane FC, Davin LB, Lewis NG. 2004. The Arabidopsis phenylalanine ammonia lyase gene family: kinetic characterization of the four PAL isoform. Phytochemistry 65: 1557-1564. https://doi.org/10.1016/j.phytochem.2004.05.006
- Dixon RA, Paiva NL. 1995. Stress-induced phenylpropanoid metabolism. Plant Cell 7: 1085-1097. https://doi.org/10.1105/tpc.7.7.1085
- Hamberger B, Hahlbrock K. 2004. The 4-coumarate:CoA ligase gene family in Arabidopsis thaliana comprises one rare, sinapate-activating and three commonly occurring isoenzymes. Proc. Natl. Acad. Sci. USA 101: 2209-2214. https://doi.org/10.1073/pnas.0307307101
- Houghton PJ, Woldemariam TZ, Davey W, Basar A, Lau C. 1995. Quantitation of the pinocembrin content of propolis by densitomety and high performance liquid chromatography. Phytochem. Anal. 6: 207-210. https://doi.org/10.1002/pca.2800060406
- Hwang EI, Kaneko M, Ohnishi Y, Horinouchi S. 2003. Production of plant-specific flavanoes by Escherichia coli containing an artificial gene cluster. Appl. Environ. Microbiol. 69: 2699-2707. https://doi.org/10.1128/AEM.69.5.2699-2706.2003
- Jangaard NO. 1974. The characterization of phenylalanine ammonia-lyase from several plant species. Phytochemistry 13: 1765-1768. https://doi.org/10.1016/0031-9422(74)85086-7
- Jaganath IB, Crozier A. 2010. Dietary Flavonoids and Phenolic Compound in Plant Phenolics and Human Health. Fraga CG (ed.). John Wiley & Sons, Hoboken, New Jersey.
- Kim B-G, Lee E-R, Ahn J-H. 2012. Analysis of flavonoid contents and expression of flavonoid biosynthetic genes in Populus euramericana Guinier in response to abiotic stress. J. Kor. Soc. Appl. Biol. Chem. 55: 141-145.
- Kim BG, Kim HJ, Ahn J-H. 2012. Production of bioactive flavonol rhamnosides by expression of plant genes in Escherichia coli. J. Agric. Food Chem. 60: 11143-11148. https://doi.org/10.1021/jf302123c
- Kim MJ, Kim B-G, Ahn J-H. 2013. Biosynthesis of bioactive O-methylated flavonoids in Escherichia coli. Appl. Microbiol. Biotechnol. 97: 7195-7204. https://doi.org/10.1007/s00253-013-5020-9
- Lee Y-J, Jeon Y, Lee JS, Kim B-G, Lee CH, Ahn J-H. 2007. Enzymatic synthesis of phenolic CoAs using 4-coumarate: coenzyme A ligase (4CL) from rice. Bull. Kor. Chem. Soc. 28: 365-366. https://doi.org/10.5012/bkcs.2007.28.3.365
- Leonard E, Lim H-K, Saw P-N, Koffas MAG. 2007. Engineering central metabolic pathways for high-level flavonoid production in Escherichia coli. Appl. Environ. Microbiol. 73: 3877-3886. https://doi.org/10.1128/AEM.00200-07
- Leonard E, Yan Y, Fowler Z, Li Z, Kim C-C, Lim K-H, Koffas MAG. 2008. Strain improvement of recombinant Escherichia coli for efficient production of plant flavonoids. Mol. Pharm. 5: 257-265. https://doi.org/10.1021/mp7001472
- Lim CF, Fowler ZL, Hueller T, Schaffer S, Koffas MA. 2011. High-yield resveratrol production in engineered Escherichia coli. Appl. Environ. Microbiol. 77: 3451-3460. https://doi.org/10.1128/AEM.02186-10
-
Liu R, Wu C-X, Zhou D, Yang F, Tian S, Zhang L, et al. 2012. Pinocembrin protects against
$\beta$ -amyloid-induced toxicity in neurons through inhibiting receptor for advanced glycation end products (RAGE)-independent signaling pathways and regulating mitochondria-mediated apoptosis. BMC Med. 10: 105. https://doi.org/10.1186/1741-7015-10-105 - Miyahisa I, Funa N, Ohnishi Y, Martens S, Moriguchi T, Horinouchi S. 2006. Combinatorial biosynthesis of flavones and flavonols in Escherichia coli. Appl. Microbiol. Biotechnol. 71: 53-58. https://doi.org/10.1007/s00253-005-0116-5
- Miyahisa I, Kaneko M, Funa N, Kawasaki H, Kojima H, Ohnishi Y, Horinouchi S. 2005. Efficient production of (2S)- flavanones by Escherichia coli containing an artificial biosynthetic gene cluster. Appl. Microbiol. Biotechnol. 68: 498-504. https://doi.org/10.1007/s00253-005-1916-3
- Park SR, Ahn MS, Han AR, Park JW, Yoon YJ. 2011. Enhanced flavonoid production in Streptomyces venezuelae via metabolic engineering. J. Microbiol. Biotechnol. 21: 1143-1146. https://doi.org/10.4014/jmb.1108.08012
- Peng L, Yang S, Cheng YJ, Chen F, Pan S, Fan G. 2012. Antifungal activity and action mode of pinocembrin from propolis against Penicillium italicum. Food Sci. Biotechnol. 21: 1533-1539. https://doi.org/10.1007/s10068-012-0204-0
- Rasul A, Millimouno FM, Eltayb WA, Ali M, Li J, Li X. 2013. Pinocembrin: a novel natural compound with versatile pharmacological and biological activities. Biomed. Res. Int. 2013: 1.
- Rösler J, Krekel F, Amrhein N, Schmid J. 1997. Maize phenylalanine ammonia-lyase has tyrosine ammonia-lyase activity. Plant Physiol. 113: 175-179. https://doi.org/10.1104/pp.113.1.175
- Santos CNS, Koffas M, Stephanopoulos G. 2011. Optimization of a heterologous pathway for the production of flavonoids from glucose. Metab. Eng. 13: 392-400. https://doi.org/10.1016/j.ymben.2011.02.002
- Vogt T. 2010. Phenylpropanoid biosynthesis. Mol. Plant 3: 2-20. https://doi.org/10.1093/mp/ssp106
- Weston RJ, Mitchella KR, Allen KL. 1999 Antibacterial phenolic components of New Zealand manuka honey. Food Chem. 64: 295-301. https://doi.org/10.1016/S0308-8146(98)00100-9
- Winkel-Shirley B. 2001. Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiol. 126: 485-493. https://doi.org/10.1104/pp.126.2.485
- Wu J, Du G, Zhou J, Chen J. 2013. Metabolic engineering of Escherichia coli for (2S)-pincocembrin production from glucose by a modular metabolic strategy. Metab. Eng. 16: 48-55. https://doi.org/10.1016/j.ymben.2012.11.009
- Yan Y, Kohli A, Koffas MAG. 2005. Biosynthesis of natural flavanones in Saccharomyces cerevisiae. Appl. Environ. Microbiol. 71: 5610-5613. https://doi.org/10.1128/AEM.71.9.5610-5613.2005
- Yang N, Qin S, Wang M, Chen B, Yuan N, Fang Y, et al. 2013. Pinocembrin, a major flavonoid in propolis, improves the biological functions of EPCs derived from rat bone marrow through the PI3K-eNOS-NO signaling pathway. Cytotechnology 65: 541-551. https://doi.org/10.1007/s10616-012-9502-x
- Yenjai C, Wanich S, Pitchuanchom S, Sripanidkulchai B. 2009. Structural modification of 5,7-dimethoxyflavone from Kaempferia parviflora and biological activities. Arch. Pharm. Res. 32: 1179-1184. https://doi.org/10.1007/s12272-009-1900-z
피인용 문헌
- Phenylalanine ammonia-lyase, a key component used for phenylpropanoids production by metabolic engineering vol.5, pp.77, 2014, https://doi.org/10.1039/c5ra08196c
- Transcriptome-enabled discovery and functional characterization of enzymes related to ( 2S )-pinocembrin biosynthesis from Ornithogalum caudatum and their application for metabolic engineering vol.15, pp.None, 2014, https://doi.org/10.1186/s12934-016-0424-8
- Pinocembrin–Lecithin Complex: Characterization, Solubilization, and Antioxidant Activities vol.8, pp.2, 2014, https://doi.org/10.3390/biom8020041
- Modulation of the central carbon metabolism of Corynebacterium glutamicum improves malonyl‐CoA availability and increases plant polyphenol synthesis vol.116, pp.6, 2019, https://doi.org/10.1002/bit.26939
- Advances in Biosynthesis, Pharmacology, and Pharmacokinetics of Pinocembrin, a Promising Natural Small-Molecule Drug vol.24, pp.12, 2014, https://doi.org/10.3390/molecules24122323
- Synthesis of Three Bioactive Aromatic Compounds by Introducing Polyketide Synthase Genes into Engineered Escherichia coli vol.67, pp.31, 2019, https://doi.org/10.1021/acs.jafc.9b03439
- Engineering Escherichia coli towards de novo production of gatekeeper (2 S )-flavanones: naringenin, pinocembrin, eriodictyol and homoeriodictyol vol.5, pp.1, 2014, https://doi.org/10.1093/synbio/ysaa012
- Synthesis of acridone derivatives via heterologous expression of a plant type III polyketide synthase in Escherichia coli vol.19, pp.None, 2014, https://doi.org/10.1186/s12934-020-01331-2
- Specialized Metabolites from Ribosome Engineered Strains of Streptomyces clavuligerus vol.11, pp.4, 2014, https://doi.org/10.3390/metabo11040239
- Optimum chalcone synthase for flavonoid biosynthesis in microorganisms vol.41, pp.8, 2014, https://doi.org/10.1080/07388551.2021.1922350