참고문헌
- Ali MK, Hayashi H, Karita S, Goto M, Kimura T, Sakka K, Ohmiya K. 2001. Importance of the carbohydrate-binding module of Clostridium stercorarium Xyn10B to xylan hydrolysis. Biosci. Biotechnol. Biochem. 65: 41-47. https://doi.org/10.1271/bbb.65.41
- Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25: 3389-3402. https://doi.org/10.1093/nar/25.17.3389
- Bataillon M, Nunes Cardinali AP, Castillon N, Duchiron F. 2000. Purification and characterization of a moderately thermostable xylanase from Bacillus sp. strain SPS-0. Enzyme Microb. Technol. 26: 187-192. https://doi.org/10.1016/S0141-0229(99)00143-X
- Beg QK, Kapoor M, Mahajan L, Hoondal GS. 2001. Microbial xylanases and their industrial applications: a review. Appl. Microbiol. Biotechnol. 56: 326-338. https://doi.org/10.1007/s002530100704
- Biely P. 1985. Microbial xylanolytic systems. Trends Biotechnol. 3: 286-290. https://doi.org/10.1016/0167-7799(85)90004-6
- Boraston AB, Creagh AL, Alam MM, Kormos JM, Tomme P, Haynes CA, et al. 2001. Binding specificity and thermodynamics of a family 9 carbohydrate-binding module from Thermotoga maritima xylanase 10A. Biochemistry 40: 6240-6247. https://doi.org/10.1021/bi0101695
- Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
- Breccia JD, Sineriz F, Baigori MD, Castro GR, Hatti-Kaul R. 1998. Purification and characterization of a thermostable xylanase from Bacillus amyloliquefaciens. Enzyme Microb. Technol. 22: 42-49. https://doi.org/10.1016/S0141-0229(97)00102-6
-
Cheng YM, Hong TY, Liu CC, Meng M. 2009. Cloning and functional characterization of a complex endo-
$\beta$ -1,3-glucanase from Paenibacillus sp. Appl. Microbiol. Biotechnol. 81: 1051- 1061. https://doi.org/10.1007/s00253-008-1617-9 - Collins T, Gerday C, Feller G. 2005. Xylanases, xylanase families and extremophilic xylanases. FEMS Microbiol. Rev. 29: 3-23. https://doi.org/10.1016/j.femsre.2004.06.005
- Feng JX, Karita S, Fujino E, Fujino T, Kimura T, Sakka K, Ohmiya K. 2000. Cloning, sequencing, and expression of the gene encoding a cell-bound multi-domain xylanase from Clostridium josui, and characterization of the translated product. Biosci. Biotechnol. Biochem. 64: 2614-2624. https://doi.org/10.1271/bbb.64.2614
- Gouet P, Robert X, Courcelle E. 2003. ESPript/ENDscript: extracting and rendering sequence and 3D information from atomic structures of proteins. Nucleic Acids Res. 31: 3320-3323. https://doi.org/10.1093/nar/gkg556
- Guillen D, Sanchez S, Rodriguez-Sanoja R. 2010. Carbohydratebinding domains: multiplicity of biological roles. Appl. Microbiol. Biotechnol. 85: 1241-1249. https://doi.org/10.1007/s00253-009-2331-y
- Han Y, Agarwal V, Dodd D, Kim J, Bae B, Mackie RI, et al. 2012. Biochemical and structural insights into xylan utilization by the thermophilic bacterium Caldanaeobius polysaccharolyticus. J. Biol. Chem. 287: 34946-34960. https://doi.org/10.1074/jbc.M112.391532
- Henrissat B, Bairoch A. 1996. Updating the sequence-based classification of glycosyl hydrolases. Biochem. J. 316: 695-696. https://doi.org/10.1042/bj3160695
- Hung KS, Liu SM, Fang TY, Tzou WS, Lin FP, Sun KH, Tang SJ. 2011. Characterization of a salt-tolerant xylanase from Thermoanaerobacterium saccharolyticum NTOU1. Biotechnol. Lett. 33: 1441-1447. https://doi.org/10.1007/s10529-011-0579-7
- Ihsanawati, Kumasaka T, Kaneko T, Morokuma C, Yatsunami R, Sato T, et al. 2005. Structural basis of the substrate subsite and the highly thermal stability of xylanase 10B from Thermotoga maritima MSB8. Proteins 61: 999-1009. https://doi.org/10.1002/prot.20700
- Ito Y, Tomita T, Roy N, Nakano A, Sugawara-Tomita N, Watanabe S, et al. 2003. Cloning, expression, and cell surface localization of Paenibacillus sp. strain W-61 xylanase 5, a multidomain xylanase. Appl. Environ. Microbiol. 69: 6969-6978. https://doi.org/10.1128/AEM.69.12.6969-6978.2003
- Kosugi A, Murashima K, Tamaru Y, Doi RH. 2002. Cellsurface- anchoring role of N-terminal surface layer homology domains of Clostridium cellulovorans EngE. J. Bacteriol. 184: 884-888. https://doi.org/10.1128/jb.184.4.884-888.2002
- Kulkarni N, S hendye A , Rao M. 1999. Molecular and biotechnological aspects of xylanases. FEMS Microbiol. Rev. 23: 411-456. https://doi.org/10.1111/j.1574-6976.1999.tb00407.x
- Laemmli UK. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685. https://doi.org/10.1038/227680a0
- Lee TH, Lim PO, Lee YE. 2007. Cloning, characterization, and expression of xylanase A gene from Paenibacillus sp. DG-22 in Escherichia coli. J. Microbiol. Biotechnol. 17: 29-36.
- Lee YE, Lim PO. 2004. Purification and characterization of two thermostable xylanases from Paenibacillus sp. DG-22. J. Microbiol. Biotechnol. 14: 1014-1021.
- Mesnage S, Fontaine T, Mignot T, Delepierre M, Mock M, Fouet A. 2000. Bacterial SLH domain proteins are noncovalently anchored to the cell surface via a c onserved mechanism involving wall polysaccharide pyruvylation. EMBO J. 19: 4473-4484. https://doi.org/10.1093/emboj/19.17.4473
- Petersen TN, Brunak S, von Heijne G, Nielsen H. 2011. SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat. Methods 8: 785-786. https://doi.org/10.1038/nmeth.1701
- Selvaraj T, Kim SK, Kim YH, Jeong YS, Kim YJ, Phuong ND, et al. 2010. The role of carbohydrate-binding module (CBM) repeat of a multimodular xylanase (XynX) from Clostridium thermocellum in cellulose and xylan binding. J. Microbiol. 48: 856-861. https://doi.org/10.1007/s12275-010-0285-5
- Sievers F, Wilm A, Dineen DG, Gibson TJ, Karplus K, Li W, et al. 2011. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 7: 539.
- Solomon V, Teplitsky A, Shulami S, Zolotnitsky G, Shoham Y, Shoham G. 2007. Structure-specificity relationships of an intracellular xylanase from Geobacillus stearothermophilus. Acta Crystallogr. D63: 845-859.
- St. John FJ, Rice JD, Preston JF. 2006. Paenibacillus sp. strain JDR-2 and XynA1: a novel system for methylglucuronoxylan utilization. Appl. Environ. Microbiol. 72: 1496-1506. https://doi.org/10.1128/AEM.72.2.1496-1506.2006
- Subramaniyan S, Prema P. 2002. Biotechnology of microbial xylanases: enzymology, molecular biology, and application. Crit. Rev. Biotechnol. 22: 33-64. https://doi.org/10.1080/07388550290789450
- Sunna A, Antranikian G. 1997. Xylanolytic enzymes from fungi and bacteria. Crit. Rev. Biotechnol. 17: 39-67. https://doi.org/10.3109/07388559709146606
- van Roosmalen ML, Geukens N, Jongbloed JDH, Tjalsma H, Dubois JYF, Bron S, et al. 2004. Type I signal peptidases of gram-positive bacteria. Biochim. Biophys. Acta 1694: 279-297. https://doi.org/10.1016/j.bbamcr.2004.05.006
-
Waeonukul R, Pason P, Kyu KL, Sakka K, Kosugi A, Mori Y, Ratanakhanokchai K. 2009. Cloning, sequencing, and expression of the gene encoding a multidomain endo-
$\beta$ -1,4- xylanase from Paenibacillus curdlanolyticus B-6, and characterization of the recombinant enzyme. J. Microbiol. Biotechnol. 19: 277-285. - Winterhalter C, Heinrich P, Candussio A, Wich G, Liebl W. 1995. Identification of a novel cellulose-binding domain within the multidomain 120 kDa xylanase XynA of the hyperthermophilic bacterium Thermotoga maritima. Mol. Microbiol. 15: 431-444. https://doi.org/10.1111/j.1365-2958.1995.tb02257.x
-
Wong KY, Tan L, Saddler JN. 1988. Multiplicity of
$\beta$ -1,4 xylanase in microorganism: functions and applications. Microbiol. Rev. 52: 305-317. - Wood PJ, Erfle JD, Teather RM. 1988. Use of complex formation between Congo red and polysaccharide in detection and assay of polysaccharide hydrolases. Methods Enzymol. 160: 59-74. https://doi.org/10.1016/0076-6879(88)60107-8
- Zhao Y, Meng K, Luo H, Huang H, Yuan T, Yang P, Yao B. 2013. Molecular and biochemical characterization of a new alkaline active multidomain xylanase from alkaline wastewater sludge. World J. Microbiol. Biotechnol. 29: 327-334. https://doi.org/10.1007/s11274-012-1186-z
피인용 문헌
- Improved Expression and Characterization of a Multidomain Xylanase from Thermoanaerobacterium aotearoense SCUT27 in Bacillus subtilis vol.63, pp.28, 2014, https://doi.org/10.1021/acs.jafc.5b01259
- A Novel Multi-domain High Molecular, Salt-Stable Alkaline Xylanase from Alkalibacterium sp. SL3 vol.7, pp.None, 2014, https://doi.org/10.3389/fmicb.2016.02120
- Raw sugarcane bagasse as carbon source for xylanase production by Paenibacillus species: a potential degrader of agricultural wastes vol.24, pp.23, 2014, https://doi.org/10.1007/s11356-017-9494-3
- Production of D-Xylonic Acid from Hemicellulose Using Artificial Enzyme Complexes vol.27, pp.1, 2014, https://doi.org/10.4014/jmb.1606.06041
- Characterization of the Wild-Type and Truncated Forms of a Neutral GH10 Xylanase from Coprinus cinereus: Roles of C-Terminal Basic Amino Acid-Rich Extension in Its SDS Resistance, Thermostability, and vol.27, pp.4, 2014, https://doi.org/10.4014/jmb.1609.09011
- Paenibacillus woosongensis의 Xylanase 11B 유전자 클로닝과 특성분석 vol.45, pp.2, 2014, https://doi.org/10.4014/mbl.1704.04001
- Paenibacillus woosongensis으로부터 Mannanase 26AT 유전자의 클로닝과 유전자 산물의 분석 vol.27, pp.9, 2014, https://doi.org/10.5352/jls.2017.27.9.1003
- Taxonomic identification of the thermotolerant and fast-growing fungus Lichtheimia ramosa H71D and biochemical characterization of the thermophilic xylanase Lr XynA vol.7, pp.1, 2017, https://doi.org/10.1186/s13568-017-0494-y
- Paenibacillus sp. A59 GH10 and GH11 Extracellular Endoxylanases: Application in Biomass Bioconversion vol.11, pp.1, 2014, https://doi.org/10.1007/s12155-017-9887-7
- Molecular and Biochemical Characterization of a Bimodular Xylanase From Marinifilaceae Bacterium Strain SPP2 vol.10, pp.None, 2019, https://doi.org/10.3389/fmicb.2019.01507
- Improving the Thermostability and pH Stability of Aspergillus niger Xylanase by Site-directed Mutagenesis vol.55, pp.2, 2014, https://doi.org/10.1134/s0003683819020108
- Heterologous expression and biochemical characterization of a thermostable xylulose kinase fromBacillus coagulansIPE22 vol.59, pp.5, 2014, https://doi.org/10.1002/jobm.201800482
- The extracellular endo-β-1,4-xylanase with multidomain from the extreme thermophile Caldicellulosiruptor lactoaceticus is specific for insoluble xylan degradation vol.12, pp.None, 2014, https://doi.org/10.1186/s13068-019-1480-1
- Paenibacillus woosongensis로부터 대장균에 Xylanase 10A의 유전자 클로닝과 정제 및 특성분석 vol.48, pp.2, 2020, https://doi.org/10.4014/mbl.2002.02013
- Characterization of two GH5 endoglucanases from termite microbiome using synthetic metagenomics vol.104, pp.19, 2014, https://doi.org/10.1007/s00253-020-10831-5
- Neotropical termite microbiomes as sources of novel plant cell wall degrading enzymes vol.10, pp.None, 2020, https://doi.org/10.1038/s41598-020-60850-5
- A genomic perspective on the potential of termite-associated Cellulosimicrobium cellulans MP1 as producer of plant biomass-acting enzymes and exopolysaccharides vol.9, pp.None, 2014, https://doi.org/10.7717/peerj.11839
- Identification, heterologous expression and biochemical characterization of a novel cellulase-free xylanase B from the thermophilic bacterium Cohnella sp.A01 vol.107, pp.None, 2014, https://doi.org/10.1016/j.procbio.2021.05.002