DOI QR코드

DOI QR Code

Genome of Betaproteobacterium Caenimonas sp. Strain SL110 Contains a Coenzyme $F_{420}$ Biosynthesis Gene Cluster

  • Li, Xiuling (Shandong Provincial Key Laboratory of Water and Soil Conservation & Environmental Protection, Linyi University) ;
  • Feng, Fuying (Institute for Applied and Environmental Microbiology, Inner Mongolia Agriculture University) ;
  • Zeng, Yonghui (Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Guangdong Ocean University)
  • Received : 2014.05.19
  • Accepted : 2014.07.16
  • Published : 2014.11.28

Abstract

To probe the genomic properties of microbes thriving in desert lakes, we sequenced the full genome of a betaproteobacterial strain (SL110) belonging to the understudied genus Caenimonas of the family Comamonadaceae. This strain was isolated from a freshwater lake in the western Gobi Desert, Northern China. Its genome contains genes encoding carbon monoxide dehydrogenase, nitrate reductase, nitrite reductase, nitric oxide reductase, and sulfur oxidation enzymes, highlighting the potentially important contribution of this group of bacteria to the cycling of inorganic elements in nature. Unexpectedly, a coenzyme $F_{420}$ biosynthesis gene cluster was identified. A further search for $F_{420}$ biosynthesis gene homologs in genomic databases suggests the possible widespread presence of $F_{420}$ biosynthesis gene clusters in proteobacterial genomes.

Keywords

References

  1. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, et al. 2008. The RAST server: Rapid annotations using subsystems technology. BMC Genomics 9: 75. https://doi.org/10.1186/1471-2164-9-75
  2. Bashiri G, Baker EN. 2012. Biology of cofactor F420 in mycobacteria. FEBS J. 279: 434-434.
  3. Berk H, Thauer RK. 1997. Function of coenzyme F-420- dependent NADP reductase in methanogenic archaea containing an NADP-dependent alcohol dehydrogenase. Arch. Microbiol. 168: 396-402. https://doi.org/10.1007/s002030050514
  4. Choi KP, Bair TB, Bae YM, Daniels L. 2001. Use of transposon Tn5367 mutagenesis and a nitroimidazopyranbased selection system to demonstrate a requirement for fbiA and fbiB in coenzyme F-420 biosynthesis by Mycobacterium bovis BCG. J. Bacteriol. 183: 7058-7066. https://doi.org/10.1128/JB.183.24.7058-7066.2001
  5. Choi KP, Kendrick N, Daniels L. 2002. Demonstration that fbiC is required by Mycobacterium bovis BCG for coenzyme F-420 and FO biosynthesis. J. Bacteriol. 184: 2420-2428. https://doi.org/10.1128/JB.184.9.2420-2428.2002
  6. Ebert S, Rieger PG, Knackmuss HJ. 1999. Function of coenzyme F-420 in aerobic catabolism of 2,4,6-trinitrophenol and 2,4-dinitrophenol by Nocardioides simplex FJ2-1A. J. Bacteriol. 181: 2669-2674.
  7. Ermolaeva MD, White O, Salzberg SL. 2001. Prediction of operons in microbial genomes. Nucleic Acids Res. 29: 1216- 1221. https://doi.org/10.1093/nar/29.5.1216
  8. Fondi M, Emiliani G, Fani R. 2009. Origin and evolution of operons and metabolic pathways. Res. Microbiol. 160: 502-512. https://doi.org/10.1016/j.resmic.2009.05.001
  9. Forouhar F, Abashidze M, Xu HM, Grochowski LL, Seetharaman J, Hussain M, et al. 2008. Molecular insights into the biosynthesis of the F-420 coenzyme. J. Biol. Chem. 283: 11832-11840. https://doi.org/10.1074/jbc.M710352200
  10. Garrity GM, Lilburn TG, Cole JR, Harrison SH, Euzeby J, Tindall BJ. 2007. Taxonomic Outline of the Bacteria and Archaea. Release 7.7. Michigan State University Board of Trustees. DOI: 10.1601/TOBA1607.1607.
  11. Goecks J, Nekrutenko A, Taylor J, Team G. 2010. Galaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences. Genome Biol. 11: R86. https://doi.org/10.1186/gb-2010-11-8-r86
  12. Graham DE, Xu HM, White RH. 2003. Identification of the 7,8-didemethyl-8-hydroxy-5-deazariboflavin synthase required for coenzyme F-420 biosynthesis. Arch. Microbiol. 180: 455-464 https://doi.org/10.1007/s00203-003-0614-8
  13. Graupner M, White RH. 2001. Biosynthesis of the phosphodiester bond in coenzyme F-420 in the methanoarchaea. Biochemistry 40: 10859-10872. https://doi.org/10.1021/bi0107703
  14. Graupner M, White RH. 2003. Methanococcus jannaschii coenzyme F-420 analogs contain a terminal alpha-linked glutamate. J. Bacteriol. 185: 4662-4665. https://doi.org/10.1128/JB.185.15.4662-4665.2003
  15. Graupner M, Xu HM, White RH. 2002. Characterization of the 2-phospho-L-lactate transferase enzyme involved in coenzyme F-420 biosynthesis in Methanococcus jannaschii. Biochemistry 41: 3754-3761. https://doi.org/10.1021/bi011937v
  16. Grochowski LL, Xu HM, White RH. 2008. Identification and characterization of the 2-phospho-L-lactate guanylyltransferase involved in coenzyme $F_{420} $biosynthesis. Biochemistry 47: 3033-3037. https://doi.org/10.1021/bi702475t
  17. Kim SJ, Weon HY, Kim YS, Moon JY, Seok SJ, Hong SB, Kwon SW. 2012. Caenimonas terrae sp nov., isolated from a soil sample in Korea, and emended description of the genus Caenimonas Ryu et al. 2008. J. Microbiol. 50: 864-868.
  18. Lawrence J. 1999. Selfish operons: the evolutionary impact of gene clustering in prokaryotes and eukaryotes. Curr. Opin. Genet. Dev. 9: 642-648. https://doi.org/10.1016/S0959-437X(99)00025-8
  19. Price MN, Arkin AP, Alm EJ. 2006. The life-cycle of operons. Plos Genetics 2: 859-873.
  20. Price MN, Huang KH, Alm EJ, Arkin AP. 2005. A novel method for accurate operon predictions in all sequenced prokaryotes. Nucleic Acids Res. 33: 880-892. https://doi.org/10.1093/nar/gki232
  21. Ryu SH, Lee DS, Park M, Wang Q, Jang HH, Park W, Jeon CO. 2008. Caenimonas koreensis gen. nov., sp nov., isolated from activated sludge. Int. J. Syst. Evol. Microbiol. 58: 1064- 1068. https://doi.org/10.1099/ijs.0.65416-0
  22. Selengut JD, Haft DH. 2010. Unexpected abundance of coenzyme F-420-dependent enzymes in Mycobacterium tuberculosis and other Actinobacteria. J. Bacteriol. 192: 5788-5798. https://doi.org/10.1128/JB.00425-10
  23. Singh BK, Walker A. 2006. Microbial degradation of organophosphorus compounds. FEMS Microbiol. Rev. 30: 428-471. https://doi.org/10.1111/j.1574-6976.2006.00018.x
  24. Willems A, Gillis M. 2005. Family IV. Comamonadaceae, pp. 686-759. In Brenner DJ, Krieg NR, Staley JT (eds.). Bergey's Manual of Systematic Bacteriology. Springer, Germany.
  25. Zerbino DR, Birney E. 2008. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res. 18: 821-829. https://doi.org/10.1101/gr.074492.107

Cited by

  1. Genomic and Transcriptomic Evidence for Carbohydrate Consumption among Microorganisms in a Cold Seep Brine Pool vol.7, pp.None, 2016, https://doi.org/10.3389/fmicb.2016.01825