DOI QR코드

DOI QR Code

Ontology Alignment by Using Discrete Cuckoo Search

이산 Cuckoo Search를 이용한 온톨로지 정렬

  • 한군 (고려대학교 컴퓨터.전파통신공학과) ;
  • 정현준 (고려대학교 컴퓨터.전파통신공학과) ;
  • 백두권 (고려대학교 컴퓨터.전파통신공학과)
  • Received : 2014.08.06
  • Accepted : 2014.10.01
  • Published : 2014.12.31

Abstract

Ontology alignment is the way to share and reuse of ontology knowledge. Because of the ambiguity of concept, most ontology alignment systems combine a set of various measures and complete enumeration to provide the satisfactory result. However, calculating process becomes more complex and required time increases exponentially since the number of concept increases, more errors can appear at the same time. Lately the focus is on meta-matching using the heuristic algorithm. Existing meta-matching system tune extra parameter and it causes complex calculating, as a consequence, the results in the various data of specific domain are not good performed. In this paper, we propose a high performance algorithm by using DCS that can solve ontology alignment through simple process. It provides an efficient search strategy according to distribution of Levy Flight. In order to evaluate the approach, benchmark data from the OAEI 2012 is employed. Through the comparison of the quality of the alignments which uses DCS with state of the art ontology matching systems.

온톨로지 정렬의 목적은 지식을 공유 및 재사용 하는 데 있다. 기존 온톨로지 정렬 시스템은 온톨로지 개념의 모호성 때문에 여러 가지 다양한 측정 기법을 사용하고 전수조사를 수행하여 사용자가 만족하는 결과를 얻는다. 온톨로지 개념이 점차 많아짐에 따라 계산이 복잡해지고 걸리는 시간이 기하급수적으로 증가하여 처리 과정에서 오류가 발생한다. 이를 해결하기 위하여 메타 휴리스틱 알고리즘을 사용하는 메타 매칭이 연구되고 있다. 기존 메타 매칭 시스템에서는 사용하는 파라미터가 많기 때문에 온톨로지 정렬 처리에 계산이 복잡하고 특정 도메인의 다양한 데이터에 따라 조율이 요구되어 온톨로지 정렬 탐색에 좋은 성능을 보여주지 못했다. 이 논문에서는 온톨로지 정렬을 쉽고 간단한 계산을 통해 높은 성능을 목표로 하여 DCS(Discrete Cuckoo Search) 를 사용한 온톨로지 정렬 알고리즘을 제안한다. 제안한 알고리즘은 Levy Flight 분포에 따른 탐색으로 효율적인 전략을 보여준다. 제안된 알고리즘은 OAEI 2012(Ontology Alignment Evaluation Initiative)에서 제공하는 벤치마크 데이터와 제안 알고리즘을 사용하여 성능을 평가한다.

Keywords

References

  1. Gruber, Thomas R., "A translation approach to portable ontology specifications," Knowledge acquisition Vol.5, No.2, pp.199-220, 1993. https://doi.org/10.1006/knac.1993.1008
  2. Granitzer, Michael, et al., "Ontology alignment-a survey with focus on visually supported semi-automatic techniques," Future Internet Vol.2, No.3, pp.238-258, 2010. https://doi.org/10.3390/fi2030238
  3. Xue, Xingsi, Yuping Wang, and Weichen Hao, "Using MOEA/D for optimizing ontology alignments," Soft Computing, pp.1-13, 2013.
  4. Ouaarab, Aziz, Belaid Ahiod, and Xin-She Yang, "Improved and Discrete Cuckoo Search for Solving the Travelling Salesman Problem," Cuckoo Search and Firefly Algorithm. Springer International Publishing, pp.63-84, 2014.
  5. Li, Juanzi, et al., "Rimom: A dynamic multistrategy ontology alignment framework," Knowledge and Data Engineering, IEEE Transactions on Vol.21, No.8: pp.1218-1232, 2009. https://doi.org/10.1109/TKDE.2008.202
  6. Do, Hong-Hai, and Erhard Rahm, "COMA: a system for flexible combination of schema matching approaches," Proceedings of the 28th international conference on Very Large Data Bases. VLDB Endowment, 2002.
  7. Aumueller, David, et al., "Schema and ontology matching with COMA++," Proceedings of the 2005 ACM SIGMOD international conference on Management of data. ACM, 2005.
  8. Drumm, Christian, et al., "Quickmig: automatic schema matching for data migration projects," Proceedings of the sixteenth ACM conference on Conference on information and knowledge management. ACM, 2007.
  9. Ehrig, Marc, and York Sure, "Foam-framework for ontology alignment and mapping results of the ontology alignment evaluation initiative," Integrating Ontologies Workshop Proceedings, Vol.72, 2005.
  10. Dhamankar, Robin, et al., "iMAP: discovering complex semantic matches between database schemas," Proceedings of the 2004 ACM SIGMOD international conference on Management of data. ACM, 2004.
  11. Gal, Avigdor, Giovanni Modica, and Hasan Jamil, "Ontobuilder: Fully automatic extraction and consolidation of ontologies from web sources," Data Engineering, 2004. Proceedings. 20th International Conference on. IEEE, 2004.
  12. Martinez-Gil, Jorge, Enrique Alba, and Jose F. Aldana-Montes, "Optimizing ontology alignments by using genetic algorithms," Proceedings of the workshop on nature based reasoning for the semantic Web. Karlsruhe, Germany, 2008.
  13. Bock, Jurgen, and Jan Hettenhausen, "Ontology Alignment using Discrete Particle Swarm Optimisation."
  14. Levenshtein, Vladimir I., "Binary codes capable of correcting deletions, insertions and reversals." Soviet physics doklady. Vol.10, 1966.
  15. Stoilos, Giorgos, Giorgos Stamou, and Stefanos Kollias., "A string metric for ontology alignment," The Semantic Web-ISWC 2005. Springer Berlin Heidelberg, pp.624-637, 2005.
  16. Yang, Xin-She, and Suash Deb., "Cuckoo search via Levy flights," Nature & Biologically Inspired Computing, 2009. NaBIC 2009. World Congress on. IEEE, 2009.
  17. Ontology Alignment Evaluation Initiative, (2012), .