DOI QR코드

DOI QR Code

닭의 성숙/미성숙란에서 RNA Sequencing을 이용한 유전자 발현 양상 고찰

Gene Expression Profiling by RNA Sequencing in Mature/Immature Oocytes of Chicken

  • 강경수 (농촌진흥청 국립축산과학원) ;
  • 장현준 (농촌진흥청 국립축산과학원) ;
  • 박미나 (농촌진흥청 국립축산과학원) ;
  • 최정우 (농촌진흥청 국립축산과학원) ;
  • 정원형 (한국생명공학연구원 국가생명연구자원정보센터) ;
  • 허강녕 (농촌진흥청 국립축산과학원) ;
  • 최창용 (농촌진흥청 국립축산과학원) ;
  • 김영주 (농촌진흥청 국립축산과학원) ;
  • 이시우 (농촌진흥청 국립축산과학원) ;
  • 조은석 (농촌진흥청 국립축산과학원) ;
  • 김남신 (한국생명공학연구원 국가생명연구자원정보센터) ;
  • 김태헌 (농촌진흥청 국립축산과학원) ;
  • 한재용 (서울대학교 농생명공학부) ;
  • 이경태 (농촌진흥청 국립축산과학원)
  • 투고 : 2014.10.08
  • 심사 : 2014.11.11
  • 발행 : 2014.12.31

초록

조류의 난포 성장은 호르몬의 작용에 따라 크기가 달라져 각각의 단계를 이루며 성장하게 된다. 난의 성숙에 관련된 유전자는 난 단백질 생산과 산란률에 밀접한 관련이 있으며, 이를 유전자 발현 측면에서 심도 있는 고찰이 필요가 있다. 본 연구는 NGS를 이용한 RNA-seq 데이터를 이용하여 유전자의 발현량과 유전자 상호 구조에 대한 분석을 실시하여 난의 발달 과정에 필요한 유전자군을 조사하였다. 본 실험에 사용된 개체는 한국 재래계 흑색계통이 사용되었고, 비교조직은 미성숙란과 성숙란의 RNA를 추출하여 유전자의 발현 양상을 살펴봄으로 난의 성숙에 필요한 유전자의 발현 양상을 보고자 하였다. 실험을 위해 Total RNA를 추출하였고, HiSeq 2000 platform을 사용하여 염기서열을 분석하고, Tuxedo Protocol과 DAVID 프로그램을 통해 유전자의 기능과 상호간의 연관관계를 예측하였다. 탐색된 유전자군은 미성숙란과 성숙란 간에 많은 차이를 보이고 있는 유전자군을 탐색한 결과, 315개의 발현이 다르게 나타나는 것으로 보이고 있으며, GO 분석을 통하여 기능면에서 미성숙란과 성숙란에서 확연히 구분되는 유전자 발현 양상을 확인할 수 있었다. 이들 결과를 통하여 향후 난성숙 과정을 이해하고, 계란 품질 향상을 위한 마커 개발을 기여할 수 있을 것으로 사료된다.

Chicken eggs undergo various physiological changes during egg maturation. To study genes associated with the egg maturation in pre-ovulation (immature) and post-ovulation (mature), we compared gene expression patterns between in the immature egg and mature egg using RNA sequencing data. Mature and immature eggs were obtained from a Heuksaek Jaerae-jong of Korean native chicken. Total RNAs obtained from the eggs were sequenced by Illumina HiSeq 2000 platform, and the generated sequence reads were mapped to Galgal4 reference sequence assembly using Tuxedo Protocol. From the comparison of the RNA sequencing data, 315 genes were differentially expressed between mature and immature eggs, and 46 genes were only detected in immature egg. Further gene ontology (GO) analysis was performed for the differentially expressed genes using DAVID, showing that 29 and 28 GO terms were independently clustered from mature and immature, respectively. From those clustered GO terms, genes related to germ cell development, sex differentiation and defense response to bacterium were mainly expressed in the immature egg, while genes related to regulation of apoptosis, steroid metabolic process and lipid homeostasis were mainly detected in the mature egg. Our results could contribute to understand egg maturation before and after ovulation, and develop genetic markers for improving egg quality and productivity.

키워드

참고문헌

  1. Asem EK, Hertelendy F 1983 Effects of forskolin on progesterone and cyclic adenosine monophosphate production in avian granulosa cells. Biol Reprod 29:1098-1104. https://doi.org/10.1095/biolreprod29.5.1098
  2. Braw-Tal R 2002 The initiation of follicle growth: The oocyte or the somatic cells? Mol Cell Endocrinol 187:11-18. https://doi.org/10.1016/S0303-7207(01)00699-2
  3. Chen CC, Johnson PA 1996 Expression of inhibin alpha and inhibin/activin beta A subunits in the granulosa layer of the large preovulatory follicles of the hen. Biol Reprod 55:450-454. https://doi.org/10.1095/biolreprod55.2.450
  4. Diaz FJ, Anthony K, Halfhill AN 2011 Early avian follicular development is characterized by changes in transcripts involved in steroidogenesis, paracrine signaling and transcription. Mol Reprod Dev 78:212-223. https://doi.org/10.1002/mrd.21288
  5. Elis S, Batellier F, Couty I, Balzergue S, Martin-Magniette ML, Monget P, Blesbois E, Govoroun MS 2008 Search for the genes involved in oocyte maturation and early embryo development in the hen. BMC Genomics 9:110. https://doi.org/10.1186/1471-2164-9-110
  6. Eppig JJ, Wigglesworth K, Pendola FL 2002 The mammalian oocyte orchestrates the rate of ovarian follicular development. Proc Natl Acad Sci USA 99:2890-2894. https://doi.org/10.1073/pnas.052658699
  7. Eppig JJ 2001 Oocyte control of ovarian follicular development and function in mammals. Reproduction 122:829-838. https://doi.org/10.1530/rep.0.1220829
  8. Etches RJ, Schoch JP 1984 A mathematical representation of the ovulatory cycle of the domestic hen. Br Poult Sci 25:65-76. https://doi.org/10.1080/13632758408454843
  9. Findlay JK 1993 An update on the roles of inhibin, activin, and follistatin as local regulators of folliculogenesis. Biol Reprod 48:15-23. https://doi.org/10.1095/biolreprod48.1.15
  10. George JW, Dille EA, Heckert LL 2011 Current concepts of follicle-stimulating hormone receptor gene regulation. Biol Reprod 84:7-17. https://doi.org/10.1095/biolreprod.110.085043
  11. Gilbert AB, Perry MM, Waddington D, Hardie MA 1983 Role of atresia in establishing the follicular hierarchy in the ovary of the domestic hen (Gallus domesticus). J Reprod Fertil 69:221-227. https://doi.org/10.1530/jrf.0.0690221
  12. Gougeon A 1996 Regulation of ovarian follicular development in primates: facts and hypotheses. Endocr Rev 17:121-155. https://doi.org/10.1210/edrv-17-2-121
  13. Huang ES, Nalbandov AV 1979 Steroidogenesis of chicken granulosa and theca cells: In vitro incubation system. Biol Reprod 20:442-453. https://doi.org/10.1095/biolreprod20.3.442
  14. Johnson PA 2012 Follicle selection in the avian ovary. Reprod Domest Anim 47:283-287. https://doi.org/10.1111/j.1439-0531.2012.02087.x
  15. Kang L, Cui X, Zhang Y, Yang C, Jiang Y 2013 Identification of miRNAs associated with sexual maturity in chicken ovary by Illumina small RNA deep sequencing. BMC Genomics 14:352. https://doi.org/10.1186/1471-2164-14-352
  16. Lovell TM, Gladwell RT, Groome NP, Knight PG 2003 Ovarian follicle development in the laying hen is accompanied by divergent changes in inhibin A, inhibin B, activin A and follistatin production in granulosa and theca layers. J Endocrinol 177:45-55. https://doi.org/10.1677/joe.0.1770045
  17. Mahon MG, Lindstedt KA, Hermann M, Nimpf J, Schneider WJ 1999 Multiple involvement of clusterin in chicken ovarian follicle development. Binding to two oocyte-specific members of the low density lipoprotein receptor gene family. J Biol Chem 274:4036-4044. https://doi.org/10.1074/jbc.274.7.4036
  18. Palmer SS, Bahr JM 1992 Follicle stimulating hormone increases serum oestradiol-17 beta concentrations, number of growing follicles and yolk deposition in aging hens (Gallus gallus domesticus) with decreased egg production. Br Poult Sci 33:403-414. https://doi.org/10.1080/00071669208417478
  19. Pan G, Thomson JA 2007 Nanog and transcriptional networks in embryonic stem cell pluripotency. Cell Res 17:42-49. https://doi.org/10.1038/sj.cr.7310125
  20. Pearl R 1917 Studies on the physiology of reproduction in the domestic fowl. Xvii. The influence of age upon reproductive ability, with a description of a new reproductive index. Genetics 2:417-432.
  21. Scanes CG, Godden PM, Sharp PJ 1977 An homologous radioimmunoassay for chicken follicle-stimulating hormone: observations on the ovulatory cycle. J Endocrinol 73:473-481. https://doi.org/10.1677/joe.0.0730473
  22. Zhang C, Shimada K, Saito N, Kansaku N 1997 Expression of messenger ribonucleic acids of luteinizing hormone and follicle-stimulating hormone receptors in granulosa and theca layers of chicken preovulatory follicles. Gen Comp Endocrinol 105:402-409. https://doi.org/10.1006/gcen.1996.6843
  23. 국립축산과학원 2008 토종닭 사육 및 인증기준 설정 연구. 가금수급안정위원회.
  24. 국립축산과학원 2011 FTA 대응 토종닭종자개발 및 산업화 발전방안 심포지엄. 한국토종닭협회.
  25. 한국양계연구소 2001 산란계의 산란생리와 생산성 유지. 월간양계연구 137:40-41.