DOI QR코드

DOI QR Code

Case Study on the Jeollabuk-do Local Water Supply Efficiency by using DEA and Malmquist Index

DEA 및 맘퀴스트 지수를 이용한 전라북도 지방상수도 효율성 사례분석

  • Received : 2014.10.15
  • Accepted : 2014.12.20
  • Published : 2014.12.28

Abstract

Korea's water supply efficiency is low, due to weak industrial structure, such as small scale, regional disparities in the management and services, unreasonable problem in a use and management of interregional water resources. This study investigated changes in the productivity of Jeollabuk-do local water supply service by using analysis of efficiency by data envelopment analysis and Malmquist Index Analysis. As a result, 6 office is showed that the value of scale efficiency is 1 and productivity index per gun in mainly seemed below average. Therefore these offices should strive to increase their productivity. This study is differentiated from earlier studies in the aspect of measuring change of productivity by not only DEA but also Malmquist productivity analysis. Therefore it will contribute to increase productivity of water supply in Jeollabuk-do.

우리나라의 상수도 사업은 규모의 영세성, 지역에 따른 경영과 서비스의 불균형, 지역 간 수자원의 이용 및 관리에 있어 불합리한 문제점 등 취약한 산업구조로 인해 효율이 낮은 실정이다. 본 연구에서는 자료포락분석(data envelopment analysis)을 활용한 효율성 분석 및 맘퀴스트(Malmquist) 지수 그리고 통계적 방법을 통해 전라북도 지방상수도 사업소의 생산성 변화를 탐색적으로 파악해 보았다. 그 결과 규모 효율성이 1인 사업소가 6개로 나타났으며, 주로 군 단위 사업소에서 평균 이하의 생산성지수를 보임으로써 이들 사업소들은 생산성 증가를 위한 노력을 경주할 필요가 있음을 알 수 있었다. 본 연구는 DEA뿐만 아니라 맘퀴스트 생산성 분석을 통하여 생산성의 변화를 측정한다는 점에서 선행연구들과 차별화되는 바, 전라북도 지역 상수도 부문의 효율성을 제고하는데 기여할 것으로 사료된다.

Keywords

References

  1. S. M. Kim, The study on the productivity of local waters by using Malmquist index, Journal of Water Policy & Economy, 18, pp. 127-136, 2011.
  2. H. J. Choi, Y. H. Seol, The study on the productivity of local warwes in Chunbuk, Regional Policy Study, 24(2), pp. 57-77, 2013.
  3. Ministry of Environment, 2012 Water works statistics, Seoul: Ministry of Environment, 2013.
  4. T. H. Kim, B. C. Kim, An analysis of the Korean non-life insurance industry's dynamic efficiency change by using DEA Window model, Journal of the Korean Data Analysis Society, 8(6), pp. 2427-2444, 2006.
  5. S. Lim, A method for selection of input-output factors in DEA, IE Interfaces, 22(1), pp. 44-55, 2009.
  6. M. H. Park, Efficiency and productivity analysis, Seoul: Korean Studies Information, 2008.
  7. C. W. Nam, M. S. Lee, Evaluating the efficiency of public health center-focused on public health centers in Gyeongbuk, Journal of the Korean Urban Management Association, 24(1), pp. 65-87, 2011.
  8. B. Kang, B. Leem, S. Yi, Analyzing management efficiency variation of gobal shipping firms with DEA and DEA/Window, Journal of the Korean Data Analysis Society, 11(6), pp. 2905-2918, 2009.
  9. T. M. Ryu, K. M. Lee, J. B. Hong, Efficiency analysis of regional cooperative operating office with DEA-AR, Journal of the Korean Data Analysis Society, 14(4), pp. 2177-2187, 2012.
  10. M. J. Farrel, The measurement of productivity efficiency, Journal of Royal Statistical Society(Series A), 120(3), pp. 253-267, 1957. https://doi.org/10.2307/2343100
  11. A. Charnes, W. W. Cooper, E. Rhodes, Measuring the efficiency of decision making units, European Journal of Operational Research, 2, pp. 429-444, 1978. https://doi.org/10.1016/0377-2217(78)90138-8
  12. R. D. Banker, A. Charnes, W. W. Cooper, Some inefficiencies in data envelopment analysis, Management Science, 30(9), pp. 1078-1092, 1984. https://doi.org/10.1287/mnsc.30.9.1078
  13. J. D. Lee, D. H. Oh, Theory of efficiency analysis, Seoul: Jiphil Media, 2012.
  14. E. H. Seo, Statistical analysis using SPSS 21, Seoul: Freedom Academy, 2013.
  15. M. H. Huh, Introduction to social network analysis using R, Seoul: Freedom Academy, 2012.
  16. Y. Lee, J. H. Kim, Y. J. Choi, Analysis on economic ripple effects of the Korean water industry, Journal of Environmental Policy, 10(3), pp. 49-71, 2011.
  17. S. M. Kim, An evaluation of local waters efficiency by using SFA, Journal of Water Policy & Economy, 19, pp. 73-89, 2012.

Cited by

  1. Water Use Efficiency and Its Influencing Factors in China: Based on the Data Envelopment Analysis (DEA)—Tobit Model vol.10, pp.7, 2018, https://doi.org/10.3390/w10070832