DOI QR코드

DOI QR Code

동적인 전기장이 다마신 구리 배선에서의 절연파괴에 미치는 영향

Effect of Dynamic Electric Fields on Dielectric Reliability in Cu Damascene Interconnects

  • 연한울 (서울대학교 재료공학부) ;
  • 송준영 (서울대학교 재료공학부) ;
  • 임승민 (서울대학교 재료공학부) ;
  • 배장용 (삼성전자 메모리사업부 개발QA팀) ;
  • 황유철 (삼성전자 메모리사업부 개발QA팀) ;
  • 주영창 (서울대학교 재료공학부)
  • Yeon, Han-Wool (Department of Materials Science and Engineering, Seoul National University) ;
  • Song, Jun-Young (Department of Materials Science and Engineering, Seoul National University) ;
  • Lim, Seung-Min (Department of Materials Science and Engineering, Seoul National University) ;
  • Bae, Jang-Yong (Department of Device Solutions, Samsung Electronics) ;
  • Hwang, Yuchul (Department of Device Solutions, Samsung Electronics) ;
  • Joo, Young-Chang (Department of Materials Science and Engineering, Seoul National University)
  • 투고 : 2014.11.30
  • 심사 : 2014.12.24
  • 발행 : 2014.12.30

초록

다마신 구리 배선에서의 동적인 전기장에 따른 절연체 파괴거동을 연구하였다. DC, 단극성, 및 이극성 펄스 조건 중에서 절연체의 수명은 이극성 펄스 조건에서 가장 길었다. DC 및 단극성 펄스 조건에서는 절연체에 가해지는 전기장의 방향이 바뀌지 않지만 이극성 펄스 조건에서는 전기장의 방향이 반복적으로 180도 바뀌기 때문에, 이극성 펄스 조건에서는 절연체의 구리오염이 억제되고, 이로 인해서 절연체 수명이 이극성 펄스 조건에서 가장 긴 것으로 판단된다. 단극성 펄스 조건에서 펄스 주파수가 커질수록 DC 조건보다 절연체의 수명이 증가하였다. 이는 절연체 수명에 구리오염 뿐만 아니라 내재적인 절연파괴현상이 상당한 영향을 미치며, 절연체 분자결합파괴가 일어날 확률은 펄스 폭이 좁아질수록 감소한다고 판단된다.

Effect of dynamic electric fields on dielectric breakdown behavior in Cu damascene interconnects was investigated. Among the DC, unipolar, and bipolar pulse conditions, the longest dielectric lifetime is observed under the bipolar condition because backward Cu ion drift occurs when the direction of electric field is changed by 180 degrees and Cu contamination is prohibited as a results. Under the unipolar pulse condition, the dielectric lifetime increases as pulse frequency increases and it exceed the lifetime under DC condition. It suggests that the intrinsic breakdown of dielectrics significantly affect the dielectric breakdown in addition to Cu contamination. As the unipolar pulse width decreases, dielectric bond breakdown is more difficult to occur.

키워드

참고문헌

  1. J. Gambino, F. Chen and J. He, "Copper Interconnect Technology for the 32 nm Node and Beyond", IEEE Custom Integrated Circuits Conference (CICC), pp. 141-148 (2009).
  2. J. W. McPherson, "Reliability Physics and Engineering", pp.63-176, Springer, New York (2010).
  3. Interconnects, International Technology Roadmap for Semiconductors. Inc. Dec. (2012) from http://www.itrs.net/
  4. N. I. Cho, "Deposition Technology of Copper Thin Films for Multi-level Metallizations", J. Microelectron. Packag. Soc., 9(3), 1 (2002).
  5. J. Y. Shim, Y. S. Moon and J. H. Lee, "Electrochemical Study of the Effect of Additives on High Current Density Copper Electroplating", J. Microelectron. Packag. Soc., 18(2), 43 (2011).
  6. F. Chen, O. Bravo, K. Chanda, P. McLaughlin, T. Sullivan, J. Gill, J. Lloyd, R. Kontra and J. Aitken, "A Comprehensive Study of Low-k SiCOH TDDB Phenomena and ITs Reliability Lifetime Model Development", Proc. 44th Annual IEEE International Reliability Physics Symposium (IRPS), San Jose, CA, 46, IEEE (2006).
  7. H. Miyazaki, D. Kodama and N. Suzumura, "The Observation of Stress-Induced Leakage Current of Damascene Interconnects after Bias Temperature Aging", Proc. 46th Annual IEEE International Reliability Physics Symposium (IRPS), Phoenix, AZ, 150, IEEE (2008).
  8. E. Chery, X. Federspiel, G. Beylier, C. Besset and D. Roy, "Back-End Dielectrics Reliability under Unipolar and Bipolar AC-Stress", Proc. International Reliability Physics Symposium (IRPS), Anaheim, CA, 3A.5.1, IEEE (2012).
  9. S.-C. Lee, A. S. Oates, "Reliability of Porous Low-K Dielectrics under Dynamic Voltage Stressing", Proc. International Reliability Physics Symposium (IRPS), Anaheim, CA, 3A.2.1, IEEE (2012).
  10. T. K. S. Wong, "Time dependent dielectric breakdown in copper low-k interconnects: Mechanisms and reliability models", Mater., 5(9), 1602 (2012). https://doi.org/10.3390/ma5091602
  11. J. W. McPherson and H. C. Mogul, "Underlying physics of the thermochemical e model in describing low-field time-dependent dielectric breakdown in $SiO_2$ thin films", J. Appl. Phys., 84(3), 1513 (1998). https://doi.org/10.1063/1.368217
  12. S. S. Hwang, S. Y. Jung and Y. C. Joo, "Characteristics of leakage current in the dielectric layer due to Cu migration during bias temperature stress", J. Appl. Phys., 104, 044511 (2008). https://doi.org/10.1063/1.2973154
  13. H. Pham, "Handbook of Reliability Engineering", pp.3, Springer, London (2003).
  14. I. Ciofi, Z. Tokei, D. Visalli and M. Van Hove, "Water and Copper Contamination in SiOC:H Damascene: Novel Characterization Methodology based on Triangular Voltage Sweep Measurements", Proc. International Interconnect Technology Conference (IITC), Burlingame, CA, 181, IEEE (2006).
  15. S. Y. Jung, B. J. Kim, N. Y. Lee, B. M. Kim, S. J. Yeom, N. J. Kwak and Y. C. Joo, "Bias polarity and frequency effects of Cu-induced dielectric breakdown in damascene Cu interconnects", Microelectron. Eng., 89, 58 (2012). https://doi.org/10.1016/j.mee.2011.01.070
  16. K. H. Lee and S. A. Campbell, "The kinetics of the oxide charge trapping and breakdown in ultrathin silicon dioxide", J. Appl. Phys., 73 (9), 4434 (1993). https://doi.org/10.1063/1.352781
  17. J. W. McPherson, "Determination of the nature of molecular bonding in silica from time-dependent dielectric breakdown data", J. Appl. Phys., 95(12), 8101 (2004). https://doi.org/10.1063/1.1728288
  18. B. J. Schlund, J. Suehle, C. Messick and P. Chaparala, "A new physics-based model for time-dependent dielectric breakdown", Microelectron. Reliab., 36(11), 1655 (1996). https://doi.org/10.1016/0026-2714(96)00168-0