DOI QR코드

DOI QR Code

Ag 코팅 Cu 플레이크 필러를 사용한 도전 페이스트의 전기 및 열전도도

Electrical Resistivity and Thermal Conductivity of Paste Containing Ag-coated Cu Flake Filler

  • 투고 : 2014.12.05
  • 심사 : 2014.12.22
  • 발행 : 2014.12.30

초록

가격적 경쟁력을 가지는 Ag 코팅 Cu 플레이크 함유 도전성 페이스트를 제조하여 경화조건에 따른 열전도도 및 전기전도도 값의 변화를 측정하였다. 대기 중에서 경화시킨 시편의 경우 경화시간이 30분에서 60분으로 증가됨에 따라 열전도도가 증가하는 경향이 관찰되었다. 60분의 동일한 경화시간 조건에서는 질소 중 경화 시편이 대기 중 경화 시편보다 향상된 열전도도 값을 나타내었다. 그 결과 질소 중에서 60분간 경화시킨 Ag 코팅 Cu 플레이크 페이스트는 순수 Ag 플레이크가 함유된 페이스트가 나타내는 열전도도에 근접하는 열특성을 나타내었다. 한편 대기 중 경화 시편의 경우 경화시간이 30분에서 60분으로 증가됨에 따라 비저항 값이 더욱 증가하는 경향이 관찰되었나, 60분의 동일한 경화시간 조건에서 질소 중 경화 시편은 대기 중 경화 시편에 비할 수 없을 만큼 개선된 비저항 값($7.59{\times}10^{-5}{\Omega}{\cdot}cm$)을 나타내었다.

After the preparation of low-cost conductive paste containing Ag-coated Cu flakes, thermal conductivity and electrical resistivity of the paste were measured with different curing conditions. Under air-curing conditions, the thermal conductivity of the cured sample increased with an increase of curing time from 30 to 60 min. After identical curing time of 60 min, the sample cured under nitrogen indicated more enhanced thermal conductivity than that cured under air, approaching that of paste containing pure Ag flakes. Under air-curing conditions, meanwhile, the electrical resistivity of the cured sample increased with an increase of curing time from 30 to 60 min. After identical curing time of 60 min, however, the sample cured under nitrogen indicated extremely enhanced electrical resistivity ($7.59{\times}10^{-5}{\Omega}{\cdot}cm$) in comparison with that cured under air.

키워드

참고문헌

  1. H.-H. Lee, K.-S. Chou and Z.-W. Shih, "Effect of Nano-sized Silver Particles on the Resistivity of Polymeric Conductive Adhesives", Int. J. Adhes. Adhes., 73, 78 (2012).
  2. D.-H. Kim, S. Yoo, C.-W. Lee and T.-Y. Lee, "Temperature Measurement and Contact Resistance of Au Stud Bump Bonding and Ag Paste Bonding with Thermal Heater Device", J. Microelectron. Packag. Soc., 17(2), 55 (2010).
  3. Z. Zhang and G.-Q. Lu, "Pressure-assisted Low-temperature Sintering of Silver Paste as an Alternative Die-attach Solution to Solder Reflow", IEEE Trans. Electron. Packag. Manufact., 25(4), 279 (2002). https://doi.org/10.1109/TEPM.2002.807719
  4. A. Yabuki and N. Arrifin, "Electrical Conductivity of Copper Nanoparticle Thin Films Annealed at Low Temperature", This Solid Films, 518, 7033 (2010). https://doi.org/10.1016/j.tsf.2010.07.023
  5. M. Joo, B. Lee, S. Jeong and M. Lee, "Laser Sintering of Cu Paste Film Printed on Polyimide Substrate", Appl. Sur. Sci., 258, 521 (2011). https://doi.org/10.1016/j.apsusc.2011.08.076
  6. H. T. Hai, J. G. Ahn, D. J. Kim, J. R. Lee, H. S. Chung and C. O. Kim, "Developing Process for Coating Copper Particles with Silver by Electroless Plating Method", Suf. Coat. Technol., 201, 3788 (2006) https://doi.org/10.1016/j.surfcoat.2006.03.025
  7. J. H. Kim, Y. H. Cho and J.-H. Lee, "Fabrication of a Ultrathin Ag Film on a Thin Cu Film by Low-Temperature Immersion Plating in an Grycol-Based Solution", J. Microelectron. Packag. Soc., 21(2), 79 (2014). https://doi.org/10.6117/kmeps.2014.21.2.079
  8. Y. Peng, C. Yang, K. Chen, S. R. Popuri, C. Lee and B. Tang, "Study on Synthesis of Ultrafine Cu-Ag Core-Shell Powders with High Electrical Conductivity", Applied Surface Science, 263, 38 (2012). https://doi.org/10.1016/j.apsusc.2012.08.066
  9. A. Muzikansky, P. Nanikashvili, J. Grinblat and D. Zitoun, "Ag Dewetting in Cu@Ag Monodisperse Core-Shell Nanoparticles", J. Phys. Chem. C, 117, 3093 (2013).
  10. H. T. Hai, H. Takamura and J. Koike, "Oxidation Behavior of Cu-Ag Core-Shell Particles for solar Cell Applications", Journal of Alloys and Compounds, 564, 71 (2013). https://doi.org/10.1016/j.jallcom.2013.02.048
  11. S.-S. Chee and J.-H. Lee, "Preparation and Oxidation Behavior of Ag-Coated Cu Nanoparticles Less Than 20 nm in Size", J. Mater. Chem. C, 2, 5372 (2014). https://doi.org/10.1039/c4tc00509k
  12. J. H. Kim and J.-H. Lee, "Effects of Pretreatment and Ag Coating Processes Conditions on the Properties of Ag-Coated Cu Flakes", Kor. J. Mater. Res., 24(11), 617 (2014). https://doi.org/10.3740/MRSK.2014.24.11.617
  13. X. Bao, M. Muhler, T. Schedel-Niedrig and R. Schlogl, "Interaction of Oxygen with Silver at High Temperature and Atmospheric Pressure: A Spectroscopic and Structural Analysis of a Strongly Bound Surface Species", Phys. Rev. B, 54(3), 2249 (1996). https://doi.org/10.1103/PhysRevB.54.2249
  14. R. Zhang, W. Lin, K. Lawrence and C. P. Wong, "Highly Reliable, Low Cost, Isotropically Conductive Adhesives Filled with Ag-coated Cu Flakes for Electronic Packaging Applications", Int. J. Adhes. Adhes., 30(6), 403 (2010). https://doi.org/10.1016/j.ijadhadh.2010.01.004
  15. M. Inoue, H. Muta, T. Maekawa, S. Yamanaka and K. Suganuma, "Temperature Dependance of Electrical and Thermal Conductivities of an Epoxy-based Isotropic Conductive Adhesive", J. Electron. Mater., 37(4), 462 (2008). https://doi.org/10.1007/s11664-007-0378-z
  16. M. Inoue, H. Muta, T. Maekawa, S. Yamanaka and K. Suganuma, "Thermal Conductivity of Isotropic Conductive Adhesives Composed of an Epoxy-based Binder", Proc. High Density Microsystem Design and Packaging and Component Failure Analysis (HDP'06) Conference, Shanghai, 236, IEEE (2006).
  17. S. Ishizuka, S. Kato, T. Maruyama and K. Akimoto, "Nitrogen Doping into $Cu_2O$ Thin Films Deposited by Reactive Radio-frequency Magnetron Sputtering", Jpn. J. Appl. Phys., 40, 2765 (2001). https://doi.org/10.1143/JJAP.40.2765
  18. C.-A. Lu, P. Lin, H.-C. Lin and S.-F. Wang, "Effect of Metallo-Organic Decomposition Agents on Thermal Decomposition and Electrical Conductivity of Low-Temperature-Curing Silver Paste", Jpn. J. Appl. Phys., 45, 6987 (2006). https://doi.org/10.1143/JJAP.45.6987