DOI QR코드

DOI QR Code

PLD 기법으로 성장된 n형 TiO2에서 Nb 도너의 활성화 에너지

The activation Energy of the Niobium donor in n-type TiO2 film grown by Pulsed Laser Deposition

  • Bae, Hyojung (School of Applied Chemical Engineering, Chonnam National University) ;
  • Ha, Jun-Seok (School of Applied Chemical Engineering, Chonnam National University) ;
  • Park, Seung Hwan (Saint-Gobain Research Corporate Limited)
  • 투고 : 2014.12.11
  • 심사 : 2014.12.22
  • 발행 : 2014.12.30

초록

본 연구에서는 $TiO_2$에 나이오븀 (Nb) 도펀트가 주입되었을 때의 활성화 에너지를 홀 효과 측정 시스템과 온도에 따른 photoluminescence (PL) 실험을 통하여 살펴보았다. Nb 이 도핑 된 n형 아나타제 $TiO_2$ 박막은 pulsed laser deposition (PLD) 기법으로 $SrTiO_3$기판에 성장되었다. 측정 결과, Nb 도너의 활성화 에너지 값은 홀 효과 측정에서는 14.52 meV, PL 측정에서는 6.72 meV로 다소 차이를 보였다. 이 결과는 기존의 어셉터 물질의 활성화 에너지들과는 차이를 나타내고 있으며, 향후 본 연구와 같은 shallow 도너 준위의 활성화 에너지 연구에 대한 더 많은 연구가 필요할 것으로 판단된다.

In this paper, we will investigate the activation energies of Nb for $TiO_2$ using Hall effect measurement and photoluminescence (PL) system. Nb-doped $TiO_2$ thin film was grown on $SrTiO_3$ substrate by pulsed laser deposition (PLD) technique. After measurements, activation energies of niobium donor were 14.52 meV in Hall effect measurement, and 6.72 meV in PL measurement, respectively. These results showed different tendencies which are measured from the samples with acceptor materials. Therefore, it is thought that more research on activation energies for dopants of shallow donor level is expected.

키워드

참고문헌

  1. B. O'Regan and M. Gratzel, "A low-cost, high-efficiency solar cell based on dye-sensitized colloidal $TiO_2$ films", NATURE, 353, 737 (1991). https://doi.org/10.1038/353737a0
  2. K. Hara, Y. Dan-oh, C. Kasada, Y. Ohga, A. Shinpo, S. Suga, K. Sayama, and H. Arakawa, "Effect of Additives on the Photovoltaic Performance of Coumarin-Dye-Sensitized Nanocrystalline $TiO_2$ Solar Cells", Langmuir, 20(10), 4205 (2004). https://doi.org/10.1021/la0357615
  3. I. Robel, V. Subramanian, M. Kuno, and P. V. Kamat, "Quantum Dot Solar Cells. Harvesting Light Energy with CdSe Nanocrystals Molecularly Linked to Mesoscopic $TiO_2$ Films", J. Am. Chem. Soc., 128(7), 2385 (2006). https://doi.org/10.1021/ja056494n
  4. J. H. Lee, T. K. Lee, and C. J. Kim, "Fabrication of $TiO_2$ Electrode Containing Scattering Particles in Dye-Sensitized Solar Cells", J. Microelectron. Packag. Soc., 18(2), 57 (2011).
  5. E. Yagi, R. R. Hasiguti, and M. Aono, "Electronic conduction above 4K of slightly reduced oxygen-deficient rutile $TiO_{2-x}$", Phys. Rev. B, 54(11), 7945 (1996). https://doi.org/10.1103/PhysRevB.54.7945
  6. C. Burda, Y. Lou, X. Chen, A. C. S. Samia, J. Stout, and J. L. Gole, "Enhanced Nitrogen Doping in $TiO_2$ Nanoparticles", Nano Letters, 3(8), 1049 (2003). https://doi.org/10.1021/nl034332o
  7. H. Tang, K. Prasad, R. Sanjines, P. E. Schmid and F. Levy, "Electrical and optical properties of $TiO_2$ anatase thin films", J. Appl. Phys., 75, 2042 (1994). https://doi.org/10.1063/1.356306
  8. Y. Furubayashi, T. Hitosugi, Y. Tamamoto, K. Inaba, G. Kinoda, Y. Hirose, T. Shimada and T. Hasegawa, "A transparent metal: Nb-doped anatase $TiO_2$", Appl. Phys. Lett. 86(25), 252101 (2005). https://doi.org/10.1063/1.1949728
  9. J. F. Baumard and E. Tani, "Electrical conductivity and charge compensation in Nb doped $TiO_2$ rutile", J. Chem. Phys., 67, 857 (1977). https://doi.org/10.1063/1.434952
  10. S. I. Lee, S. B. Baek and M. H. Kim, "Electrical Properties and Defect Type of Nb-doped $TiO_2$", J. Kor. Ceram. Soc., 36(12), 1335 (1999).
  11. A. T. Zajac and M. Rekas, "Electrical properties of Nb-doped titanium dioxide $TiO_2$ at room temperature", Mater. Sci. Pol., 24, 53 (2006).
  12. J. W. Sun, Y. M. Lu, Y. C. Liu, D. Z. Shen, Z. Z. Zhang, B. H. Li, J. Y. Zhang, B. Yao, D. X. Zhao, and X. W. Fan, "The activation energy of the nitrogen acceptor in p-type ZnO film grown by plasma-assisted molecular beam epitaxy", Solid State Commu., 140, 345 (2006). https://doi.org/10.1016/j.ssc.2006.09.007
  13. B. Podor, "Thermal ionization energy of Mg acceptors in GaN: Effects of doping level and compensation", Proc. SPIE int. Soc. Opt. Eng., 4412, 299 (2001).
  14. J. S. Blackmore, "Semiconductor Statistics", pp.117-152, Pergamon Press, N.Y. (1962).
  15. J. W. Deford and O. W. Johnson, "Electron transport properties in rutile from 6 to 40K", J. Appl. Phys., 54, 889 (1983). https://doi.org/10.1063/1.332051
  16. M. Itakura, N. Nizeki, H. Toyoda and H. Iwasaki, "Hall effect and thermoelectric power in semiconductive $TiO_2$", Jpn. J. Appl. Phys., 6(3), 311 (1967). https://doi.org/10.1143/JJAP.6.311
  17. H. Bae, J.-S. Ha, S. Park, T. Chikyow, J. Chang, and D. Oh, "Effect of niobium doping on the optical and electrical properties in titanium dioxide grown by pulsed laser deposition", J. Vac. Sci. Technol. B, 30(5), 050603-1 (2012).
  18. T.M. Kim, D. C. Choo, D. U. Lee, H. S. Lee, M. S. Jang, and H. L. Park, "Coalescence and electron activation energy in CdTe/ZnTe nanostructures", Appl. Phys. Lett., 81(3), 487 (2002). https://doi.org/10.1063/1.1490634