DOI QR코드

DOI QR Code

SUMO Proteins are not Involved in TGF-${\beta}1$-induced, Smad3/4-mediated Germline ${\alpha}$ Transcription, but PIASy Suppresses it in CH12F3-2A B Cells

  • Lee, Sang-Hoon (Department of Microbiology, College of Medicine, Konyang University) ;
  • Kim, Pyeung-Hyeun (Department of Molecular Bioscience, School of Biomedical Science, Kangwon National University) ;
  • Oh, Sang-Muk (Department of Biochemistry, College of Medicine, Konyang University) ;
  • Park, Jung-Hwan (Department of Biochemistry, College of Medicine, Konyang University) ;
  • Yoo, Yung-Choon (Department of Microbiology, College of Medicine, Konyang University) ;
  • Lee, Junglim (Department of Microbiology, College of Medicine, Konyang University) ;
  • Park, Seok-Rae (Department of Microbiology, College of Medicine, Konyang University)
  • Received : 2014.10.07
  • Accepted : 2014.12.02
  • Published : 2014.12.31

Abstract

TGF-${\beta}$ induces IgA class switching by B cells. We previously reported that Smad3 and Smad4, pivotal TGF-${\beta}$ signal-transducing transcription factors, mediate germline (GL) ${\alpha}$ transcription induced by TGF-${\beta}1$, resulting in IgA switching by mouse B cells. Post-translational sumoylation of Smad3 and Smad4 regulates TGF-${\beta}$-induced transcriptional activation in certain cell types. In the present study, we investigated the effect of sumoylation on TGF-${\beta}1$-induced, Smad3/4-mediated $GL{\alpha}$ transcription and IgA switching by mouse B cell line, CH12F3-2A. Overexpression of small ubiquitin-like modifier (SUMO)-1, SUMO-2 or SUMO-3 did not affect TGF-${\beta}1$-induced, Smad3/4-mediated $GL{\alpha}$ promoter activity, expression of endogenous $GL{\alpha}$ transcripts, surface IgA expression, and IgA production. Next, we tested the effect of the E3 ligase PIASy on TGF-${\beta}1$-induced, Smad3/4-mediated $GL{\alpha}$ promoter activity. We found that PIASy overexpression suppresses the $GL{\alpha}$ promoter activity in cooperation with histone deacetylase 1. Taken together, these results suggest that SUMO itself does not affect regulation of $GL{\alpha}$ transcription and IgA switching induced by TGF-${\beta}1$/Smad3/4, while PIASy acts as a repressor.

Keywords

References

  1. Stavnezer, J. 1996. Immunoglobulin class switching. Curr. Opin. Immunol. 8: 199-205. https://doi.org/10.1016/S0952-7915(96)80058-6
  2. Stavnezer, J. 2000. Molecular processes that regulate class switching. Curr. Top. Microbiol. Immunol. 245: 127-168.
  3. Park, S. R. 2012. Activation-induced cytidine deaminase in B cell immunity and cancers. Immune Netw. 12: 230-239. https://doi.org/10.4110/in.2012.12.6.230
  4. Park, S. R., J. H. Lee, and P. H. Kim. 2001. Smad3 and Smad4 mediate transforming growth factor-beta1-induced IgA expression in murine B lymphocytes. Eur. J. Immunol. 31: 1706-1715. https://doi.org/10.1002/1521-4141(200106)31:6<1706::AID-IMMU1706>3.0.CO;2-Z
  5. Park, S. R., E. K. Lee, B. C. Kim, and P. H. Kim. 2003. p300 cooperates with Smad3/4 and Runx3 in TGFbeta1-induced IgA isotype expression. Eur. J. Immunol. 33: 3386-3392. https://doi.org/10.1002/eji.200324061
  6. Choi, S. H., G. Y. Seo, E. H. Nam, S. H. Jeon, H. A. Kim, J. B. Park, and P. H. Kim. 2007. Opposing effects of Arkadia and Smurf on TGFbeta1-induced IgA isotype expression. Mol. Cells 24: 283-287.
  7. Park, K. H., E. H. Nam, G. Y. Seo, S. R. Seo, and P. H. Kim. 2009. Tiul1 and TGIF are involved in downregulation of TGFbeta1-induced IgA isotype expression. Immune Netw. 9: 248-254. https://doi.org/10.4110/in.2009.9.6.248
  8. Park, S. R., M. H. Jung, S. H. Jeon, M. H. Park, K. H. Park, M. R. Lee, and P. H. Kim. 2010. IFN-gamma down-regulates TGF-beta1-induced IgA expression through Stat1 and p300 signaling. Mol. Cells 29: 57-62. https://doi.org/10.1007/s10059-010-0004-4
  9. Miyazono, K., Y. Kamiya, and K. Miyazawa. 2008. SUMO amplifies TGF-beta signalling. Nat. Cell Biol. 10: 635-637. https://doi.org/10.1038/ncb0608-635
  10. Melchior, F. 2000. SUMO--nonclassical ubiquitin. Annu. Rev. Cell Dev. Biol. 16: 591-626. https://doi.org/10.1146/annurev.cellbio.16.1.591
  11. Welchman, R. L., C. Gordon, and R. J. Mayer. 2005. Ubiquitin and ubiquitin-like proteins as multifunctional signals. Nat. Rev. Mol. Cell Biol. 6: 599-609. https://doi.org/10.1038/nrm1700
  12. Ohshima, T. and K. Shimotohno. 2003. Transforming growth factor-beta-mediated signaling via the p38 MAP kinase pathway activates Smad-dependent transcription through SUMO-1 modification of Smad4. J. Biol. Chem. 278: 50833-50842. https://doi.org/10.1074/jbc.M307533200
  13. Lin, X., M. Liang, Y. Y. Liang, F. C. Brunicardi, and X. H. Feng. 2003. SUMO-1/Ubc9 promotes nuclear accumulation and metabolic stability of tumor suppressor Smad4. J. Biol. Chem. 278: 31043-31048. https://doi.org/10.1074/jbc.C300112200
  14. Lin, X., M. Liang, Y. Y. Liang, F. C. Brunicardi, F. Melchior, and X. H. Feng. 2003. Activation of transforming growth factor-beta signaling by SUMO-1 modification of tumor suppressor Smad4/DPC4. J. Biol. Chem. 278: 18714-18719. https://doi.org/10.1074/jbc.M302243200
  15. Lee, P. S., C. Chang, D. Liu, and R. Derynck. 2003. Sumoylation of Smad4, the common Smad mediator of transforming growth factor-beta family signaling. J. Biol. Chem. 278: 27853-27863. https://doi.org/10.1074/jbc.M301755200
  16. Liang, M., F. Melchior, X. H. Feng, and X. Lin. 2004. Regulation of Smad4 sumoylation and transforming growth factor-beta signaling by protein inhibitor of activated STAT1. J. Biol. Chem. 279: 22857-22865. https://doi.org/10.1074/jbc.M401554200
  17. Imoto, S., K. Sugiyama, R. Muromoto, N. Sato, T. Yamamoto, and T. Matsuda. 2003. Regulation of transforming growth factor-beta signaling by protein inhibitor of activated STAT, PIASy through Smad3. J. Biol. Chem. 278: 34253-34258. https://doi.org/10.1074/jbc.M304961200
  18. Imoto, S., N. Ohbayashi, O. Ikeda, S. Kamitani, R. Muromoto, Y. Sekine, and T. Matsuda. 2008. Sumoylation of Smad3 stimulates its nuclear export during PIASy-mediated suppression of TGF-beta signaling. Biochem. Biophys. Res. Commun. 370: 359-365. https://doi.org/10.1016/j.bbrc.2008.03.116
  19. Long, J., I. Matsuura, D. He, G. Wang, K. Shuai, and F. Liu. 2003. Repression of Smad transcriptional activity by PIASy, an inhibitor of activated STAT. Proc. Natl. Acad. Sci. U. S. A. 100: 9791-9796. https://doi.org/10.1073/pnas.1733973100
  20. Long, J., G. Wang, I. Matsuura, D. He, and F. Liu. 2004. Activation of Smad transcriptional activity by protein inhibitor of activated STAT3 (PIAS3). Proc. Natl. Acad. Sci. U. S. A. 101: 99-104. https://doi.org/10.1073/pnas.0307598100
  21. Kang, J. S., E. F. Saunier, R. J. Akhurst, and R. Derynck. 2008. The type I TGF-beta receptor is covalently modified and regulated by sumoylation. Nat. Cell Biol. 10: 654-664. https://doi.org/10.1038/ncb1728
  22. Nakamura, M., S. Kondo, M. Sugai, M. Nazarea, S. Imamura, and T. Honjo. 1996. High frequency class switching of an $IgM^+$ B lymphoma clone CH12F3 to $IgA^+$ cells. Int. Immunol. 8: 193-201. https://doi.org/10.1093/intimm/8.2.193
  23. Zhang, Y., X. Feng, R. We, and R. Derynck. 1996. Receptor-associated Mad homologues synergize as effectors of the TGF-beta response. Nature 383: 168-172. https://doi.org/10.1038/383168a0
  24. Hahn, S. A., M. Schutte, A. T. Hoque, C. A. Moskaluk, L. T. da Costa, E. Rozenblum, C. L. Weinstein, A. Fischer, C. J. Yeo, R. H. Hruban, and S. E. Kern. 1996. DPC4, a candidate tumor suppressor gene at human chromosome 18q21.1. Science 271: 350-353. https://doi.org/10.1126/science.271.5247.350
  25. Long, J., G. Wang, D. He, and F. Liu. 2004. Repression of Smad4 transcriptional activity by SUMO modification. Biochem. J. 379: 23-29. https://doi.org/10.1042/BJ20031867
  26. Tou, L., Q. Liu, and R. A. Shivdasani. 2004. Regulation of mammalian epithelial differentiation and intestine development by class I histone deacetylases. Mol. Cell Biol. 24: 3132-3139. https://doi.org/10.1128/MCB.24.8.3132-3139.2004
  27. Park, M. H, S. R. Park, M. R. Park, Y. H. Kim, and P. H. Kim. 2011. Retinoic acid induces expression of Ig germ line ${\alpha}$ transcript, an IgA isotype switching indicative, through retinoic acid receptor. Genes Genom. 33: 83-88. https://doi.org/10.1007/s13258-010-0168-5
  28. Jang, Y. S., S. H. Choi, S. R. Park, H. A. Kim, J. B. Park, and P. H. Kim. 2004. Characterization of mouse B lymphoma cells (CH12F3-2A) for the study of IgA isotype switching. Immune Netw. 4: 216-223. https://doi.org/10.4110/in.2004.4.4.216
  29. Verger, A., J. Perdomo, and M. Crossley. 2003. Modification with SUMO. A role in transcriptional regulation. EMBO Rep. 4: 137-142. https://doi.org/10.1038/sj.embor.embor738

Cited by

  1. Progress of small ubiquitin-related modifiers in kidney diseases vol.132, pp.4, 2014, https://doi.org/10.1097/cm9.0000000000000094