DOI QR코드

DOI QR Code

A Comparative Study on Electrochemical Impedance Analysis of Solid Carbon Fuels in Direct Carbon Fuel Cell

직접탄소 연료전지에서 고체 탄소 연료에 따른 전기화학 임피던스 비교 연구

  • 조재민 (부산대학교 기계공학부 대학원) ;
  • 엄성용 (부산대학교 기계공학부 대학원) ;
  • 이광섭 (부산대학교 기계공학부 대학원) ;
  • 안성율 (일본 전력중앙연구소) ;
  • 김덕줄 (부산대학교 기계공학부) ;
  • 최경민 (부산대학교 기계공학부)
  • Received : 2014.11.19
  • Accepted : 2014.12.31
  • Published : 2014.12.30

Abstract

Direct Carbon Fuel Cell(DCFC) is one of new power generation that the chemical energy of solid carbon can be converted into electrical energy directly. At the high temperature, the electrochemical reaction of the carbon takes place and the carbon reacts with oxygen to produce carbon dioxide as followed overall reaction ($C+O_2{\rightarrow}CO_2$). However, in case of using the raw coals as a fuel of DCFC, the volatile matter containing carbon, hydrogen, and oxygen produces at operating temperature. In this study, the electrochemical reaction of Adaro coal was compared with Graphite. This work focused on the electrochemical reaction of two kinds of solid carbon by Electrochemical Impedance Spectroscopy(EIS). The EIS results were estimated by equivalent circuit analysis. The constant phase element(CPE) was applied in Randle circuit to explain an electrode and fuel interface. The correlation between the fuel characteristic and electrochemical results was discussed by elements of equivalent circuit of each fuel.

Keywords

References

  1. S. Giddey, S. P. S. Badwal, A. Kulkarni, and C. Munnings, ''A comprehensive review o direct carbon fuel cell technology", Progress in Energy and Combustion Science, Vol. 38, 2012, p. 360 https://doi.org/10.1016/j.pecs.2012.01.003
  2. D. Cao, Y Sun, and G. Wang, "Direct carbon fuel cell : Fundamentals and recent developments", Journal of Power Source, Vol.167, 2007, p. 250. https://doi.org/10.1016/j.jpowsour.2007.02.034
  3. A. Elleuch, A. Boussetta, and K. Halouani, "Analytical modeling of electrochemical mechanisms in CO2 and CO/CO2 producing Direct Carbon Fuel Cell", Journal of Electroanalytical Chemistry, Vol. 668, 2012, p.99. https://doi.org/10.1016/j.jelechem.2012.01.010
  4. S. Campanari, M. Gazzani, and M. C. Romano, "Analysis of Direct Carbon Fuel Cell Based Coal Fired Power Cycles With CO2 Capture", J. Eng. Gas Turbines Power Vol. 135, 2012, 011701. https://doi.org/10.1115/1.4007354
  5. J. F. Cooper, J. R. Selmanb, "Electrochemical Oxidation of Carbon for Electric Power Generation: A Review", The Electrochemical Society, Vol. 19, 2009, pp. 15-25.
  6. S. C. Lee, C. H Kim, M. G. Hwang, M. S. Kim, K. B. Kim, C. H. Joen, and J. H. Song, "Measurement and Analysis of Coal Conversion Efficiency for a Coal Recirculating Fuel Cell Simulator." Trans. of the Korean Society of Hydrogen Energy, vol. 23, 2012, pp. 503-512. https://doi.org/10.7316/KHNES.2012.23.5.503
  7. J. F. Cooper, J. R. Selman, "Analysis of the carbon anode in direct carbon conversion fuel cells", International Journal of Hydrogen Energy, Vol 37, 2012, pp. 19319-19328. https://doi.org/10.1016/j.ijhydene.2012.03.095
  8. H. J. Ryu, Y. J. Kim, Y. S. Park, and M. H. Park, "Reaction Characteristics of Coal and Oxygen Carrier Particle in a Thermogravimetric Analyzer." Trans. of the Korean Society of Hydrogen Energy, vol. 22, 2011, pp. 213-222.
  9. X. Li, Z. Zhu, R. De Marco, J. Bradley, and A. Dicks, "Evaluation of raw coals as fuels for direct carbon fuel celss", Journal of Power Sources, Vol. 195, 2010, pp. 4051-4058. https://doi.org/10.1016/j.jpowsour.2010.01.048
  10. Li C, Shi Y and Cai N. "Performance improvement of direct carbon fuel cell by introducing catalystic gasification process", Journal of Power Sources Vol. 195, 2010, pp. 4460-4466.
  11. W. Hao, X. He, Y. Mi, "Achieving performance in intermediate temperature direct carbon fuel cells with renewable carbon as a fuel source", Applied Energy, Vol. 135, 2014, pp. 174-181. https://doi.org/10.1016/j.apenergy.2014.08.055
  12. B. D. Cullity, S. R. Stock, Elements of X-Ray Diffraction, Prentice Hall, 3rd, pp. 95-170.
  13. S. Y. Ahn, S. Y. Eom, Y. H. Rhie, Y. M. Sung, C. E. Moon, G. M. Choi, and D. J. Kim, "Utilization of wood biomass char in a direct carbon fuel cell(DCFC) system", Applied Energy, Vol. 105, 2013, pp. 207-216. https://doi.org/10.1016/j.apenergy.2013.01.023
  14. S. Y. Ahn, S. Y. Eom, Y.H. Rhie, Y. M. Sung, C. E. Moon, G. M. Choi, and D. J. Kim, "Application of refuse fuels in a direct carbon fuel cell system", Energy, Vol 51, 2013, pp. 447-456. https://doi.org/10.1016/j.energy.2012.12.025
  15. W. H. A. Peelen, K, Hemmes, J. H. W. de Wit, "Competive study on the oxygen dissolution behaviour in 62/38 mol% Li/K and 52/48 mol% Li/Na carbonate", Journal of Electroanalytical Chemistry, Vol. 470, 1999, pp. 39-45. https://doi.org/10.1016/S0022-0728(99)00209-0
  16. J. R. Macdonald, E Barsoukov, "Impedance Spectroscopy theory, experiment, and applications", John Wiley & Sons, Inc., Publication, 2005.
  17. Y. H. Rhie, S. Y. Eom, S. Y. Ahn, G. M. Choi, and D. J. Kim, "Effect of thermal decomposition products of coal on anodic reactions in direct carbon fuel cells", Journal of Mechanical Science Technology, Vol. 28, 2014, pp. 3807-3812. https://doi.org/10.1007/s12206-014-0843-6
  18. X. Li, Z. Zhu, R. D. Marco, A. Dicks, J. Bradley, S. Liu, and G. Q. Lu, "Factors That Determine the Performance of Carbon Fuels in the Direct Carbon Fuel Cell", Industrial & Engineering Chemistry Research, Vol. 47, 2008, pp 9670-9677. https://doi.org/10.1021/ie800891m
  19. S. Y. Eom, S. Y. Ahn, Y. H. Rhie, K. J. Kang, Y. M. Sung, C. E. Moon, G. M. Choi, and D. J. Kim, "Influence of devolatilized gases composition from raw coal fuel in the lab scale DCFC (direct carbon fuel cell) system", Energy, Vol. 74, 2014, pp.734-740. https://doi.org/10.1016/j.energy.2014.07.039
  20. Y. Lin, Z. Zhan, J. Liu, and S. A. Barnett "Direct operation of solid oxide fuel cells with methane fuel." Solid State Ionics Vol. 176, 2005, pp. 1827-1835. https://doi.org/10.1016/j.ssi.2005.05.008
  21. S. Klink, D. Hoche, F. L. Mantia, and W. Schuhmann "FEM modelling of a coaxial three-electrode test cell for electrochemical impedance spectroscopy in lithium ion batteries." Journal of Power Sources 240 (2013): 273-280. https://doi.org/10.1016/j.jpowsour.2013.03.186
  22. A. C. Rady, S. Giddey, A. Kulkarni, S. P. Badwal, and S. Bhattacharya, "Degradation Mechanism in a Direct Carbon Fuel Cell Operated with Demineralised Brown Coal", Electrochimica Acta, 143, 2014, pp. 278-290. https://doi.org/10.1016/j.electacta.2014.07.088
  23. L. Deleebeeckz, and K. Kammer Hansen "HDCFC Performance as a Function of Anode Atmosphere (N2-CO2)." Journal of The Electrochemical Society 161.1, 2014, pp F33-F46.