DOI QR코드

DOI QR Code

REDEFINED FUZZY CONGRUENCES ON SEMIGROUPS

  • Chon, Inheung (Department of Mathematics Seoul Women's University)
  • Received : 2014.07.26
  • Accepted : 2014.12.11
  • Published : 2014.12.30

Abstract

We redefine a fuzzy congruence, discuss some properties of the fuzzy congruences, find the fuzzy congruence generated by a fuzzy relation on a semigroup, and give some lattice theoretic properties of the fuzzy congruences on semigroups.

Keywords

References

  1. I. Chon, Generalized fuzzy congruences on semigroups, Korean J. Math. 18 (2010), 343-356.
  2. J. A. Goguen, L-fuzzy sets, J. Math. Anal. Appl. 18 (1967), 145-174. https://doi.org/10.1016/0022-247X(67)90189-8
  3. K. C. Gupta and R. K. Gupta, Fuzzy equivalence relation rede ned, Fuzzy Sets and Systems 79 (1996), 227-233. https://doi.org/10.1016/0165-0114(95)00155-7
  4. V. Murali, Fuzzy equivalence relation, Fuzzy Sets and Systems 30 (1989), 155-163. https://doi.org/10.1016/0165-0114(89)90077-8
  5. C. Nemitz, Fuzzy relations and fuzzy function, Fuzzy Sets and Systems 19 (1986), 177-191. https://doi.org/10.1016/0165-0114(86)90036-9
  6. M. Samhan, Fuzzy congruences on semigroups, Inform. Sci. 74 (1993), 165-175. https://doi.org/10.1016/0020-0255(93)90132-6
  7. E. Sanchez, Resolution of composite fuzzy relation equation, Inform. and Control 30 (1976), 38-48. https://doi.org/10.1016/S0019-9958(76)90446-0
  8. L. A. Zadeh, Fuzzy sets, Inform. and Control 8 (1965), 338-353. https://doi.org/10.1016/S0019-9958(65)90241-X

Cited by

  1. Group compatible intuitionistic fuzzy matrices vol.38, pp.4, 2014, https://doi.org/10.1007/s40314-019-0975-5
  2. Intuitionistic fuzzy relations compatible with the group Zn vol.27, pp.1, 2014, https://doi.org/10.1186/s42787-019-0053-6