References
- I. Babuska and M. Suri, The h-p version of the finite element method with quasi-uniform meshes, RAIRO Model. Math. Anal. Numer., 21 (1987), 199-238.
- I. Babuska and M. Suri, The optimal convergence rates of the p-version of the finite element method, SIAM J. Numer. Anal., 24 (1987), 750-776. https://doi.org/10.1137/0724049
- B. Cockburn and C. -W. Shu, The local discontinuous Galerkin method for time-dependent convectiondiffusion systems, SIAM J. Numer. Anal., 35(6) (1998), 2440-2463. https://doi.org/10.1137/S0036142997316712
- Y. Epshteyn and A. Kurganov, New interior penalty discontinuous Galerkin methods for the Keller-Segel Chemotaxis model, SIAM J. Numer. Anal., 47(1) (2008), 386-408.
- A. Hansbo and P. Hansbo, An unfitted finite element method based on Nitsche's method for elliptic interface problems, Comput. Methods Appl. Mech. Engrg., 191(47-48) (2002), 5537-5552. https://doi.org/10.1016/S0045-7825(02)00524-8
- A. Hansbo, P. Hansbo, and M. G. Larson, A finite element method on composite grids based on Nitsche's method, ESAIM Math. Model. Numer., 37(3) (2003), 495-514. https://doi.org/10.1051/m2an:2003039
- A. Lasis and E. Suli, hp-version discontinuous Galerkin finite element method for semilinear parabolic problems, SIAM J. Numer. Anal., 45(4) (2007), 1544-1569. https://doi.org/10.1137/050642125
- J. Nitsche, Uber ein Variationspringzip zvr Losung von Dirichlet-Problemen bei Verwendung von Teilraumen, die keinen Randbedingungen unterworfen sind. Abh. Math. Sem. Univ. Hamburg, 36 (1971), 9-15. https://doi.org/10.1007/BF02995904
- M. R. Ohm, H. Y. Lee, and J. Y. Shin, Error estimates for discontinuous Galerkin method for nonlinear parabolic equations, J. Math. Anal. Appl., 315(1) (2006), 132-143. https://doi.org/10.1016/j.jmaa.2005.07.027
- B. Riviere and M. F. Wheeler, Nonconforming methods for transport with nonlinear reaction, Contemporary Mathematics, 295 (2002), 421-432. https://doi.org/10.1090/conm/295/05032
- B. Riviere and S. Shaw, Discontinuous Galerkin finite element approximation of nonlinear non-fickian diffusion in viscoelastic polymers, SIAM J. Numer. Anal., 44(6) (2006), 2650-2670. https://doi.org/10.1137/05064480X
- B. Riviere, S. Shaw and J. R. Whiteman, Discontinuous Galerkin finite element methods for dynamic linear solid viscoelasticity problems, Numer. Methods Partial Differential Equations, 23(5) (2007), 1149-1166. https://doi.org/10.1002/num.20215
- B. Riviere and M. F. Wheeler, A discontinuous Galerkin method applied to nonlinear parabolic equations, Discontinuous Galerkin methods:theory, computation and applications [Eds. by B. Cockburn, G. E. Karniadakis and C. -W. Shu], Lecture notes in computational science and engineering, Springer-Verlag, 11 (2000), 231-244.
- S. Sun and M. F. Wheeler, Symmetric and nonsymmetric discontinuous Galerkin methods for reactive transport in porous media, SIAM J. Numer. Anal., 43(1) (2005), 195-219. https://doi.org/10.1137/S003614290241708X
- Y. Xu and C. -W. Shu, A local discontinuous Galerkin method for the Camassa-Holm equation, SIAM J. Numer. Anal., 46(4) (2008), 1998-2021. https://doi.org/10.1137/070679764
Cited by
- ERROR ESTIMATES FOR FULLY DISCRETE MIXED DISCONTINUOUS GALERKIN APPROXIMATIONS FOR PARABOLIC PROBLEMS vol.31, pp.5, 2014, https://doi.org/10.7858/eamj.2015.049
- ERROR ESTIMATES FOR A SEMI-DISCRETE MIXED DISCONTINUOUS GALERKIN METHOD WITH AN INTERIOR PENALTY FOR PARABOLIC PROBLEMS vol.32, pp.1, 2016, https://doi.org/10.7858/eamj.2016.011