Acknowledgement
Supported by : National Research Foundation of Korea(NRF)
References
- J. B. Bell, P. Colella, and H. M. Glaz, A second order projection method for the incompressible Navier-Stokes equations, J. Comput. Phys., 85 (1989), 257-283. https://doi.org/10.1016/0021-9991(89)90151-4
- S.C. Brenner and L.R. Scott, The Mathematical Theory of Finite Element Methods, Springer-Verlag, New York, 2008.
- A. Chorin, A numerical method for solving incompressible ciscous flow problems, J. Comput. Phys., 2 (1967), 12-26. https://doi.org/10.1016/0021-9991(67)90037-X
- F. Gibou and C. Min, Efficient symmetric positive definite second-order accurate monolithic solver for fluid/solid interactions, J. of Comput. Phys., 231 (2012), 3246-3263. https://doi.org/10.1016/j.jcp.2012.01.009
- F. Harlow and J. Welch, Numerical calculation of time-dependent viscous incompressible flow of fluids with free surfaces, Physics of Fluids, 8 (1965), 2182-2189. https://doi.org/10.1063/1.1761178
- H. Helmholtz, On integrals of the hydrodynamic equations which correspond to vortex motions, Journal fur die reine und angewandte Mathematik, 55 (1858), 22-55.
- J. Kim and P. Moin, Application of a Fractional-step Method to Incompressible Navier-Stokes Equations, J. Comput. Phys., 59 (1985), 308-323. https://doi.org/10.1016/0021-9991(85)90148-2
- W. E. and J. G. Liu, Gauge method for viscous incompressible flows, Comm. Math. Sci., 1 (2003), 317-332. https://doi.org/10.4310/CMS.2003.v1.n2.a6
- Y.-T. Ng, C. Min and F. Gibou, An efficient fluid-solid coupling algorithm for single-phase flows, J. Comput. Phys., 228 (2009), 8807-8829. https://doi.org/10.1016/j.jcp.2009.08.032
- C. Pozrikidis, Introduction to theoretical and computational fluid dynamics, Oxford university press, 1997.
- J. W. Purvis and J. E. Burhalter, Prediction of critical Mach number for store configurations, AIAA J., 17 (1979), 1170-1177. https://doi.org/10.2514/3.7617
- G. Yoon and C. Min, On treating grid nodes too near the boundary in Shortley-Weller method J. Comput. Phys., (2014), submitted.
- G. Yoon, J. Park, and C. Min, Convergence analysis on Gibou-Min method for the Hodge projection, Communications in Mathematical Sciences, (2014), submitted.