DOI QR코드

DOI QR Code

부틸고무의 압출을 위한 압출해석 및 다이설계

Computer Simulation of Extrusion and Die Design for the Extrusion of Butyl Rubber

  • 최태균 (서울과학기술대학교 대학원 제품설계금형공학과) ;
  • 이희주 (서울과학기술대학교 기계시스템디자인공학과) ;
  • 류민영 (서울과학기술대학교 기계시스템디자인공학과)
  • Choi, T.G. (Department of Product Design Manufacturing Engineering, Graduate school, Seoul National University of Science and Technology) ;
  • Lee, H.J. (Department of Mechanical System Design Engineering, Seoul National University of Science and Technology) ;
  • Lyu, M.Y. (Department of Mechanical System Design Engineering, Seoul National University of Science and Technology)
  • 투고 : 2014.09.15
  • 심사 : 2014.10.11
  • 발행 : 2014.12.31

초록

건축용 접착제로 활용되고 있는 부틸고무는 주로 시트의 형태로 사용된다. 본 연구에서는 컴퓨터 해석을 통해 부틸고무 시트 압출용 다이를 설계하였다. 압출용 다이의 내부는 크게 매니폴드와 랜드로 나뉜다. 매니폴드는 다이중앙에서 유입되는 재료가 폭 방향으로 흐름이 이루어 지도록 하는 역할을 한다. 랜드는 재료가 흐름 방향으로 균일하게 흐르게 하여 균일한 두께의 시트가 성형되도록 한다. 다이는 매니폴드와 랜드 외에도 아일랜드를 설치하여 흐름의 안정을 주도록 하는 경우가 많다. 본 연구에서는 컴퓨터 해석을 통하여 다이에서 매니폴드의 각도와 길이, 랜드 길이 그리고 아일랜드를 설계 변수로 하여 다이 출구에서 다이 폭 방향으로 균일한 흐름이 형성되도록 하는 최적의 다이형상을 연구하였다.

Butyl rubber is used as an adhesive and it is mainly used in the form of sheets. The goal of this study is to design an extrusion die for the butyl rubber sheets using computer simulation. The extrusion die for the butylrubber sheets consists of manifold area and land area. In the manifold area, flows are spread from the entrance of the extrusion die to the land area. In the land area, flows become stable to the flow direction and uniform sheet can be obtained. Island area is being installed in the land area to get uniform flow. Four parameters, angle of manifold, length of manifold, length of land and island, were examined in the computer simulation. The optimum geometry of the extrusion die is derived which has a uniform flow in the width direction of the die.

키워드

참고문헌

  1. C. W. Na, S. E. Shim, and etc., 고무재료와 가공기술, The Rubber Society of Korea, Seoul, 2008.
  2. H.Y . Kim, M. -Y. Lyu, "Introduction to Poylmer Shaping Processes and Their Principles", Polym. Sci. Technol., 20, 157-169 (2011).
  3. J. H. Kim, J. S. Hong, S. H. Choi, H. J. Kim, and M.-Y. Lyu, "Computer Simulation of Die Extrusion for Rubber Compound Using Simplified Viscoelastic Model", Elast. Compos., 46, 54-59 (2011).
  4. Chris. R, Polymer Extrusion 4th revised edition, Hanser, New York, 14-15, 2001.
  5. Chris. R, Polymer Extrusion 4th revised edition, Hanser, New York, 539-547, 2001.
  6. E. S Douglas, "Design Sensitivity Analysis and Optimization for Polymer Sheet Extrusion and Mold Filling Processes", J. Num. Meth. Eng., 57, 1381-1411, (2003). https://doi.org/10.1002/nme.782
  7. Y. Ying, W. Jia, G. Yuguag and L. Baiyuan, "The Finite Analysis and Optimization of Head Runner of Rubber Sheeting Extruder", Key Eng. Mater., 561, 25-29 (2013). https://doi.org/10.4028/www.scientific.net/KEM.561.25
  8. E. S Douglas, Q. Wang, "Optimization-based Design of Polymer Sheeting Dies Using Generalized Newtonian Fluid Models", Polym. Eng. Sci., 45, 953-965 (2005). https://doi.org/10.1002/pen.20347
  9. L. Nadhir, S. Fabrice, P. Stephan, "Design and optimization of three-dimensional extrusion dies, using constraint optimization algorithm", Finite Elements in Analysis and Design, 45, 333-340 (2009). https://doi.org/10.1016/j.finel.2008.10.008
  10. G. D. Oliver, "A Survey of Manifold Designs for Flat Die Extrusion", Conference proceedings : ANTEC, 61, 27-33 (2003).
  11. Y. Sun, M. Gupta, "An Analysis of The Effect of Elongational Viscosity on The Flow in a Flat Die", Conference proceedings : ANTEC, 62, 3307-3311 (2004).
  12. J. M. Nobrega, O. S. Carneiro, P. J. Oliveira, F. T. Pinho, "Sensitivity of Flowdistribution and Flow Patterns in Profile Extrusion Dies", Conference proceedings : ANTEC, 61, 310-314 (2003).
  13. E. C. Brown, A. L. Kelly, P. D. Coates, "Effect of Extrusion Die Geometry on Molecular Orientation of Unfilled Polyethylene", Conference proceedings : ANTEC, 61, 1464-1468 (2003).
  14. M. K. Alam, C. Tzoganakis, J. Perdikoulias, "Effect of Rheology and Die Design on Flow Balancing of Profile Extrusion Dies", Conference proceedings : ANTEC, 1, 76-80 (2005).
  15. S. R. Lee, D. Y. Yang, "Shape optimization of flow guides in three-dimensional extrusion processes by an approximation scheme based on state variable linearization", Int. J. Num. Meth. Eng., 66, 1691-1716 (2006). https://doi.org/10.1002/nme.1522
  16. N. Sombatsompop, N. O. Charoen, "Extrudate Swell Behavior of PS and LLDPE Melts in a DualDie with Mixed Circular/ Slit Flow Channels in an Extrusion Rheometer", Polym. Adv. Technol., 14, 699-710 (2003). https://doi.org/10.1002/pat.411
  17. W. A. Gifford, "Compensating for Die Swell in The Design of Profile Dies", Conference proceedings : ANTEC, 61, 11-16 (2003).
  18. E. S Douglas, Q. Wang, "Incorporating Adjustable Features in the Optimal Design of Polymer Sheet Extrusion Dies", J. Manuf. Sci. Eng., 128, 11-19 (2006). https://doi.org/10.1115/1.2113027
  19. W. S. Lee, H.-Y. Ho, "Experimental Study on Extrudate Swell and Die Geometry of Profile Extrusion", Polym. Eng. Sci., 40, 1085-1094 (2000). https://doi.org/10.1002/pen.11236
  20. S. R. Vaddiraju, M. Kostic, and etc., "Extrusion Simulation and Experimental Validation to Optimize Precision Die Design", Conference proceedings : ANTEC, 62, 76-80 (2004).
  21. G. -J. Yang, X. -C. Huang, and etc., "An Improvement on Design of Sheet Extrusion Dies", Int. Polym. Proc., 20, 336- 344 (2005).
  22. H. Kim, Y. H. Park, J. S. Hong, M. -Y. Lyu, S. K. Shin, J. K. Seo, "Computer Simulation of Flow Balance in the Die of Slot Coater: Part 1: Land Geometry", ANTEC, Conference Proceedings, 2, 1399-1403 (2012).
  23. G. G. Yoon, H. Kim, M. -Y. Lyu, J. J. Jeong, "Computer Simulation of Transient Flow Behavior of Photo Resist in the Coater Die", PPS-28, Pattaya, Thailand, 2012.12.12
  24. N. Sombatsompop, A. K. Wood, "Flow Analysis of Natural Rubber in A Capillary Rheometer. 2: Flow Patterns and Entrance Velocity Profiles in the Die", Polym. Eng. Sci., 37, 281-290 (1997). https://doi.org/10.1002/pen.11670