DOI QR코드

DOI QR Code

뫼스바우어선원적용을 위한 전기도금과 열처리기법을 이용한 Co가 확산된 Cu기지체 제조

Synthesis of Co Diffused Cu Matrix by Electroplating and Annealing for Application of Mössbauer Source

  • 최상무 (한국원자력연구원 동위원소이용연구부) ;
  • 엄영랑 (한국원자력연구원 동위원소이용연구부)
  • Choi, Sang Moo (Radioisotope Research Division, Korea Atomic Energy Research Institute (KAERI)) ;
  • Uhm, Young Rang (Radioisotope Research Division, Korea Atomic Energy Research Institute (KAERI))
  • 투고 : 2014.12.08
  • 심사 : 2014.12.12
  • 발행 : 2014.12.31

초록

뫼스바우어 선원 $^{57}Co/Cu$의 제조조건을 도출하기 위하여, 금속 분말 코발트(Co)를 황산에 용해시킨 후 $H_3BO_3$, KOH와 NaCl을 첨가하여 Sulfamate 도금용액을 제조 후 Cu plate 기판에 도금하였다. 도금두께는 $4{\mu}m$로 일정하게 유지하였다. 전류밀도를 $2mA/cm^2$$30mA/cm^2$로 유지하면서 pH에 변화를 준 결과 pH가 4 이상으로 증가하면 hcp 결정의 Co 금속 이외의 2차상이 생성되었다. pH가 증가할수록 Co 후막 표면이 거칠어 졌으며 균열된 표면형상을 관찰하였다. pH가 5까지 증가할 경우 평균입도는 54 nmfh 증가함을 확인하였다. 열처리조건을 변화시키면서 Co가 Cu기지 내에 구속되는 온도가 $900^{\circ}C$에서 2 h임을 확인하였다. 열처리는 진공 후 Ar 분위기(1.5 l/min)를 유지하면서 수행하였다.

To establish the coating conditions for $^{57}Co$, non-radioactive Co ions are dissolved in an acid solution and electroplated on to a copper plate. Then, the thermal diffusion of electroplated Co into a copper matrix was studied to apply a $^{57}Co$ $M{\ddot{o}}ssbauer$ source. Nanocrystalline Co particles were coated on a Cu substrate using DC electro-deposition at a pH of 1.89 to 5 and $20{\sim}30mA/cm^2$. The average grain size was up to 54 nm as the pH increased to 5. The second phase of Co-oxide was formatted as the pH was increased above 4. The diffusion degree was evaluated by mapping using scanning electron microscopy (SEM). The influence of different annealing conditions was investigated. The diffusion depth of Co depends on the annealing temperature and time. The results obtained confirm that the deposited Co diffused almost completely into a copper matrix without substantial loss at an annealing temperature of $900^{\circ}C$ for 2 hours.

키워드

참고문헌

  1. C.-J. Song and J. G. Mullen, Nuclear Instruments and Methods 140, 81 (1977). https://doi.org/10.1016/0029-554X(77)90067-2
  2. C. S. Kim, S. Y. An, Y. R. Uhm, S. W. Lee, Y. B. Kim, and C. S. Kim, J. Appl. Phys. 83, 6929 (1998). https://doi.org/10.1063/1.367591
  3. A. Mustachi, Nuclear Instruments and Methods 26, 219 (1964). https://doi.org/10.1016/0029-554X(64)90080-1
  4. J. Stephen, Nuclear Instruments and Methods 26, 269 (1964). https://doi.org/10.1016/0029-554X(64)90089-8
  5. V. Rusanov, V. Gushterov, L. Tsankov, L. H. Bottger, and A. X. Trautwein Nuclear Instruments and Methods in Physics Research B 269, 145 (2010).
  6. W. Zhang, Z. Wang, S. Aibao, S. Dengqui, T. Fan, and Q. Su, Applied Radiation and Isotopes 41, 783 (1990). https://doi.org/10.1016/0883-2889(90)90027-E
  7. I. Cieszykowska, M. Zottowska, and M. Mielcarski, Applied Radiation and Isotopes 69, 142 (2011). https://doi.org/10.1016/j.apradiso.2010.09.003
  8. R. Gonzales-Ramirez, H. Jimenez-Dominguez, O. Solorza-Feria, E. Ordonez-Regil, A. Cabral-Prieto, and S. Bulbulian, Journal of Radioanalytical and Nuclear Chemistry 174, 291 (1993). https://doi.org/10.1007/BF02037916
  9. Izabela Cieszykowska, Malgorzata Zoltowska, Piotr Zachariasz, Andrzeja Piasecki, Tomasz Janiak, and Mieczyslaw Mielcarski, Applied Radiation and Isotopes 69, 1193 (2011). https://doi.org/10.1016/j.apradiso.2011.03.040
  10. A. Ciszewski, S. Posluszny, G. Milczarek, and M. Baraniak, Surf. Coat Technol. 183, 127 (2004). https://doi.org/10.1016/j.surfcoat.2003.09.054
  11. Y. R. Uhm, J. H. Park, W. W. Kim, C.-H. Cho, and C. K. Rhee, Materials Science and Engineering B 106, 224 (2004). https://doi.org/10.1016/j.mseb.2003.08.057
  12. B. Szeptycka: Russ. J. Electrochem. 37, 684 (2001). https://doi.org/10.1023/A:1016708415994