DOI QR코드

DOI QR Code

Lead Isotope Analysis of Bronze Artefacts Excavated from Inyongsaji Site

납동위원소비 분석을 활용한 인용사지 출토 청동기의 원료 산지 연구

  • Lee, Eun Woo (Jungwon National Research Institute of Cultural Heritage) ;
  • Kim, So Jin (Conservation Science Division, National Research Institute of Cultural Heritage) ;
  • Han, Woo Rim (Conservation Science Division, National Research Institute of Cultural Heritage) ;
  • Han, Min Su (Conservation Science Division, National Research Institute of Cultural Heritage) ;
  • Hwang, Jin Ju (Jungwon National Research Institute of Cultural Heritage)
  • 이은우 (국립중원문화재연구소) ;
  • 김소진 (국립문화재연구소 보존과학연구실) ;
  • 한우림 (국립문화재연구소 보존과학연구실) ;
  • 한민수 (국립문화재연구소 보존과학연구실) ;
  • 황진주 (국립중원문화재연구소)
  • Received : 2014.09.26
  • Accepted : 2014.11.13
  • Published : 2014.12.20

Abstract

Chemical and Pb isotope analysis were performed in order to determine the origin of bronze artefacts excavated from the Inyongsaji site in South Korea. The result of ICP-MS shows that they are tin bronzes in which lead was not intentionally added during production. Pb isotope data analyzed by TIMS are plotted in the southern region of Korea and China of the distribution map drawn by Mabuchi(1985). On the other hand, the identical isotope data are plotted in the Taebaek basin and the Olcheon metamorphic belt correspondent to zone2 and zone3 respectively. It is believed that the isotope data on the tin bronzes which have very low lead content can be used to trace the origin of copper ore rather than those of either lead or tin ore. Pb istope analysis allows diverse interpretation as it can be applied to any object containing trace amounts of lead. In addition, accumulation of isotope data as well as further studies will improve reliability of the provenance studies.

인용사지에서 출토된 청동기 5점으로부터 채취한 시료를 대상으로 원료의 기원과 이동을 확인하기 위해 성분분석 및 납동위원소비 분석을 실시하였다. 인용사지에서 출토된 청동기는 구리 및 주석의 이원계 합금으로 제작되어 납이 인위적으로 첨가되지 않음을 확인할 수 있었다. 또한 출토 청동기의 납동위원소비 분석 결과, Mabuchi(1985)의 분포도에 의해 한반도 남부 및 중국 남부 지역에 포함됨을 확인하였으며, 한반도 납동위원소 분포도에 도시하여 태백산분지인 Zone 2 및 옥천변성대에 해당하는 Zone 3에 위치함을 알 수 있었다. 대상 유물은 모두 납의 함량이 상당히 적은 주석청동으로, 이때의 납동위원소비는 구리 광석의 산지에서 기인하는 것으로 추정할 수 있다. 납동위원소비 분석은 납을 미량으로 포함한 모든 유물에 적용 가능하므로, 다양하게 해석할 수 있으며, 추가적인 데이터의 확보와 연구를 통해 산지 추정 연구의 신뢰성을 높일 수 있을 것이라 판단된다.

Keywords

References

  1. Al-Saa'd, Z., 2000, Technology and provenance of a collection of Islamic copper-based objects as found by chemical and lead isotope analysis. Archaeometry, 42, 385-397. https://doi.org/10.1111/j.1475-4754.2000.tb00889.x
  2. Choi, B.K., Choi, S.G., Seo, J.E., Yoo, I.K., Kang, H.S. and Koo, M.H., 2010, Mineralogical and Geochemical Characteristics of the Wolgok-Seongok Orebodies in the Gagok Skarn Deposit:Their Genetic Implications. Econ. Environ. Geol., 43, 277-290. (in Korean with English abstract)
  3. Choi, J., et al., 1986, Study on the Korean bronzes. Journal of the Korean Institute of Metals 24, 4, 540-546. (in Korean)
  4. Chung, K.Y and Lee, J.H., 2009, A Study of the Microstructure and Provenance Area of Bronze Spoons Excavated from the Ok-dong Site in Andong. Journal of the Korean Conservation Science for Cultural Properties, 25, 411-420. (in Korean with English abstract)
  5. Cui, J., 2011, An experimental investigation on lead isotopic fractionation during metallurgical processes. Archaeometry, 53, 205-214. https://doi.org/10.1111/j.1475-4754.2010.00548.x
  6. Gale, N.H., Stos-Gale, G.A., Maliotis, G. and Annetts, N., 1997, Lead isotope data from the Isotrace Laboratory, Oxford: Archaeometry Data Base 4, Ores from Cyprus. Archaeometry, 39, 237-246. https://doi.org/10.1111/j.1475-4754.1997.tb00802.x
  7. Gyeongju National Research Institute of Cultural Heritage, 2013, Jeoninyongsaji Site I. Gyeongju National Research Institute of Cultural Heritage. (in Korean)
  8. Haustein, M., Gillis, C., and Pernicka, E., 2010, Tin isotopy-A new method for solving old questions. Archaeometry, 52, 816-832. https://doi.org/10.1111/j.1475-4754.2010.00515.x
  9. Hirao Y., 2001, Scientific eyes studying on cultural heritage. Hakyeon.
  10. Huh, I.K., Cho, N.C. and Kang, H.T., 2007, Provenance and metallurgical study on bronze mirrors excavated from Mireuksaji temple site, Iksan. Journal of Conservation Science, 20, 23-30. (in Korean with English abstract)
  11. Jeong, Y.J., Cheong, C.S, Shin, D.B, Lee, K.S, Jo, H.J., Gaitam, M.K. and Lee, I.S., 2012, Regional variations in the lead isotopic composition of galena from southern Korea with implications for the discrimination of lead provenance. Journal of Asian Earth Sciences, 61, 116-127. https://doi.org/10.1016/j.jseaes.2012.09.008
  12. Kang, H.T., Chung, K.Y., and Lee, G.K., 2002, Lead isotope ratios of bronze artifacts from Sudong site, youngkwang-gun. The Honam Archaeological Society, 15, 7-18. (in Korean with English abstract)
  13. Klein, S., Lahaye, Y., Brey, G.P. and Von Kaenel, H.M., 2004, The early Roman imperial aes coinage II: Tracing the copper sources by analysis of lead and copper isotopescopper coins of Augustus and Tiberius. Archaeometry, 46, 469-480. https://doi.org/10.1111/j.1475-4754.2004.00168.x
  14. Ling, J., Stos-Gale, J., Grandin, L., Billström, K., and Hjärthner-Holdar, E., 2014, Moving metals II: provenancing Scandinavian Bronze Age artefacts by lead isotope and elemental analyses. Journal of Archaeological Science, 33, 106-132.
  15. Mabuchi, H., 1985, The lead isotope systematics in Asia and near East. Grant Report to the Ministry of Education, Science, and Culture, 19. (in Japanese)
  16. Mathur, R., Titleyb, S., Hartc, G., Wilsond, M., Davignone, M., and Zlatosa, C., 2009, The history of the United States cent revealed through copper isotope fractionation,. Journal of Archaeological Science, 36, 430-433. https://doi.org/10.1016/j.jas.2008.09.029
  17. Pryce, T. O., et al., 2014, More questions than answers: The Southeast Asian Lead Isotope Project 2009-2012. Journal of Archaeological Science, 42, 273-294. https://doi.org/10.1016/j.jas.2013.08.024
  18. Stos-Gale, Z., Gale, N. H., 2009, Metal provenancing using isotopes and the Oxford archaeological lead isotope database(OXALID). Archaeol Anthropol Sci, 1, 195-213. https://doi.org/10.1007/s12520-009-0011-6
  19. Tian J.H., Jin, Z.Y., Li, R.L., Yan, L.F., and Cui, J.Y., 2010, An elemental and lead-isotopic study on bronze helmets from royal tomb No. 1004 in Yn Ruins. Archaeometry, 52, 1002-1014.
  20. Yuan, S., Peng, J., Hao, S., Li, H., Geng, J., and Zhang, D., 2011, In situ LA-MC-ICP-MS and ID-TIMS U-Pb geochronology of cassiterite in the giant Furong tin deposit, Hunan Province, South China: New constraints on the timing of tin-polymetallic mineralization. Ore Geology Reviews, 43, 235-242. https://doi.org/10.1016/j.oregeorev.2011.08.002
  21. Weeks, L.R., Keall, E., Pashley, V., Evans, J. and Stock, S., 2009, Lead isotope analyses of Bronze Age copper- base artefacts from Al-Midamman, Yemen: towards the identification of an indigenous metal production and exchange system in the southern Red Sea region. Archaeometry 51(4), 576-597. https://doi.org/10.1111/j.1475-4754.2008.00429.x

Cited by

  1. Scientific Study for Seungja Chongtong in the Central Museum of Kyunghee University vol.32, pp.1, 2016, https://doi.org/10.12654/JCS.2016.32.1.02
  2. Scientific Analysis and Provenance Study of Bronze Artifacts Excavated from Dongchon Site in Sunchang, Jeollabuk-do, Korea vol.32, pp.2, 2016, https://doi.org/10.12654/JCS.2016.32.2.01