DOI QR코드

DOI QR Code

AAPM Phantom을 이용한 CT 영상 평가 시 자동화된 정량적 분석 방법 개발

Development of Automatized Quantitative Analysis Method in CT Images Evaluation using AAPM Phantom

  • 노성순 (서울아산병원 영상의학과) ;
  • 엄효식 (서울아산병원 영상의학과) ;
  • 김호철 (을지대학교 보건과학대학 방사선학과)
  • Noh, Sung Sun (Department of Radiology, Asan Medical Center) ;
  • Um, Hyo Sik (Department of Radiology, Asan Medical Center) ;
  • Kim, Ho Chul (Department of Radiological Science, Eulji University)
  • 투고 : 2014.09.12
  • 심사 : 2014.11.24
  • 발행 : 2014.12.25

초록

CT 표준팬텀을 이용한 대조도 분해능 평가와 공간 분해능 영상 평가 시 평가자의 주관적 판단에 의한 오류를 최소화하기 위한 자동화된 정량적 평가 방법을 제시하고, 그 유용성을 평가하고자 한다. Nuclear Associates사(社) AAPM CT Performance Phantom(Model 76-410)을 사용하여 120kVp와 250mAs, 10mm collimation과 25cm 이상의 SFOV(scan field of view), 25cm의 DFOV(display field of view)의 촬영조건으로, standard reconstruction algorithm을 이용하여 촬영한 24개의 적합 팬텀 영상과 20개의 부적합 팬텀 영상을 대상으로 평가하였다. 대조도 분해능과 공간 분해능 영상을 정량적으로 평가하기 위해 Mathwork사(社) Matlab(Ver. 7.6. (R2008a)) software를 이용하여 자체 개발한 평가 프로그램을 사용하였다. 본 연구에서는 자체 개발한 자동화된 평가 프로그램을 이용하여 평가한 결과, 정성적 평가 항목을 객관적 수치로 평가할 수 있었다. 첫째, 대조도 분해능의 경우 이심률 지수(eccentricity index, EI)가 0.50, 0.51, 0.52, 0.53 일 때 정성적으로 평가한 결과와 정량적으로 평가한 결과가 일치했다. 둘째, 대조도 분해능에서 대조도 대 잡음비(contrast to noise ratio, CNR)이 -0.0018~-0.0010인 경우에 정성적으로 평가한 결과와 정량적으로 평가한 결과가 일치했다. 셋째, 공간 분해능의 경우 영상 분할 기법을 통해 구멍의 외곽선 윤곽을 자동으로 분할 추출한 결과, 정성적으로 평가한 결과와 정량적으로 평가한 결과가 일치했다.

When evaluating the spatial resolution images and evaluation of low contrast resolution using CT standard phantom, and might present a automated quantitative evaluation method for minimizing errors by subjective judgment of the evaluator be, and try to evaluate the usefulness. 120kVp and 250mAs, 10mm collimation, SFOV(scan field of view) of 25cm or more than, exposure conditions DFOV(display field of view) of 25cm, and were evaluated the 24 passing images and 20 failing images taken using a standard reconstruction algorithm by using the Nuclear Associates, Inc. AAPM CT Performance Phantom(Model 76-410). Quantitative evaluation of low contrast resolution and spatial resolution was using an evaluation program that was self-developed using the company Mathwork Matlab(Ver. 7.6. (R2008a)) software. In this study, the results were evaluated using the evaluation program that was self-developed in the evaluation of images using CT standard phantom, it was possible to evaluate an objective numerical qualitative evaluation item. First, if the contrast resolution, if EI is 0.50, 0.51, 0.52, 0.53, as a result of evaluating quantitatively the results were evaluated qualitatively match. Second, if CNR is -0.0018~-0.0010, as a result of evaluating quantitatively the results were evaluated qualitatively match. Third, if the spatial resolution, as a result of using a image segmentation technique, and automatically extract the contour boundary of the hole, as a result of evaluating quantitatively the results were evaluated qualitatively match.

키워드

참고문헌

  1. 추성실, "방사선의 의학적 이용에 따른 방사선 안전관리 현황", 대한방사선방어의학회지, Vol. 15, no. 1, pp. 39-46, 1990.
  2. You Hyun Kim et al, "Patient exposure doses from medical x-ray examinations in Korea", Journal of radiological science and technology , Vol. 28, no. 3, pp. 241-248, 2005.
  3. Kyung Rae Dong et al, "Actual Condition of Quality Control of X-ray Imaging System in Primary Care Institution: focused on Gwangju Metropolitan City", Journal of radiation protection, Vol. 35, no. 1, pp. 34-41, 2010.
  4. 보건복지부, "특수의료장비의 설치 및 운영에 관한 규칙", 보건복지부령 제146호, 2012.
  5. Fluke Biomedical, "Nuclear Associates 76-410-4130 and 76-411 Users Manual", 2005.
  6. 한국의료영상품질관리원, "CT 팬텀영상검사 안내서", 2012.
  7. H. C. Kim et al, "Development of automatized new indices for radiological assessment of chest-wall deformity and its quantitative evaluation", Medical and Biological Engineering Computing, Vol. 46, pp. 815-823, 2008. https://doi.org/10.1007/s11517-008-0367-2
  8. Ho Chul Kim et al, "Fully automatic initialization method for quantitative assessment of chest-wall deformity in funnel chest patients", Medical and Biological Engineering Computing, Vol. 48, pp. 589-595, 2010. https://doi.org/10.1007/s11517-010-0612-3
  9. P Doyle et al, "Application of contrast-to-noise ratio in optimizing beam quality for digital chest radiography: comparison of experimental measurements and theoretical simulations", Physics In Medicine And Biology, Vol. 51, pp. 2953-2970, 2006. https://doi.org/10.1088/0031-9155/51/11/018
  10. Hye Jung Park et al, "The Relationship between subjective and objective parameters in CT phantom image evaluation", Korean J Radiol, Vol. 10, no. 5, pp. 490-495, 2009. https://doi.org/10.3348/kjr.2009.10.5.490
  11. 최원찬, "서울에서 사용 중인 전산화단층촬영장치의 실태 및 AAPM CT Phantom을 이용한 영상평가", 석사학위논문, 고려대학교 의용과학대학원, 2009.
  12. Barrett FF et al, "Artifact in CT: recognition and avoidance", Radiographics, Vol. 24, no. 6, pp. 1679-1691, 2004. https://doi.org/10.1148/rg.246045065
  13. Ki Hong Kim et al, "Development and Application of an Automatic Program for Quality Control in Computed Tomography", Journal 01 Korean Society 01 Computed Tomographic Technology, Vol. 8, no. 1, pp. 53-62, 2006.
  14. Sung Hyun Kim et al, "Objective and Quantitative Evaluation of Image Quality Using Fuzzy Integral: Phantom Study", Korean journal of medical physics, Vol. 19, no. 4, pp. 201-208, 2008.
  15. Alexander L. C. Kwan et al, "Automatic quantitative low contrast analysis of digital chest phantom radiographs", Medical Physics, Vol. 30, no. 3, pp. 312-320, 2003. https://doi.org/10.1118/1.1543153
  16. Xiujiang J. Rong et al, "Comparison of an amorphous silicon/cesium iodide flat-panel digital chest radiography system with screen/film and computed radiography systems - A contrast-detail phantom study", Medical Physics, Vol. 28, no. 11, pp. 2328-2335, 2001. https://doi.org/10.1118/1.1408620
  17. Chuen-Horng Lin et al, "An Automatic Evaluation System for Contrast-Detail Phantom Images in Digital Radiography", Wiley Periodicals, Inc., Vol. 22, pp. 214-225, 2012.
  18. Christian von Falck et al, "A Systematic approach towards the objective evaluation of low- contrast performance in MDCT: Combination of a full-reference image fidelity metric and a software phantom", European Journal of Radiology, Vol. 81, pp. 3166-3171, 2012. https://doi.org/10.1016/j.ejrad.2012.06.003
  19. M Alvarez et al, "Application of wavelets to the evaluation of phantom images for mammography quality control", Physics In Medicine And Biology, Vol. 57, pp. 7177-7190, 2012. https://doi.org/10.1088/0031-9155/57/21/7177
  20. Geoffrey Dougherty, "Computerized evaluation of mammographic image quality using phantom images", Computerized Medical Imaging and Graphics, Vol. 22, pp. 365-373, 1998. https://doi.org/10.1016/S0895-6111(98)00043-3
  21. Kenneth W. Brooks et al, "Automated analysis of the American College of Radiology mammographic accreditation phantom images", Medical Physics, Vol. 24, no. 5, pp. 709-723, 1997. https://doi.org/10.1118/1.597992
  22. Guo Zhimin et al, "Study on scan techniques dedicated for analysis of Computed Tomography (CT) system performance", 18th World Conference on Nondestructive Testing, 2012.

피인용 문헌

  1. Fabrication of an anthropomorphic heterogeneous mouse phantom for multimodality medical imaging vol.63, pp.19, 2018, https://doi.org/10.1088/1361-6560/aadf2b
  2. AAPM Phantom을 이용한 CT 팬텀 영상 평가 시 정량적 분석 방법에 관한 연구 vol.16, pp.8, 2014, https://doi.org/10.5392/jkca.2016.16.08.592
  3. 전산화단층촬영장비 테이블의 에어 매트리스 적용에 따른 화질평가 vol.14, pp.6, 2014, https://doi.org/10.7742/jksr.2020.14.6.819