DOI QR코드

DOI QR Code

Real-time PCR을 이용한 식육원료의 의도적, 비의도적 혼입 판별법 개발

Detection and Differentiation of Intentional and Unintentional Mixture in Raw Meats Using Real-time PCR

  • 김규헌 (식품의약품안전처 식품의약품안전평가원 신종유해물질팀) ;
  • 김미라 (식품의약품안전처 식품의약품안전평가원 신종유해물질팀) ;
  • 박영은 (식품의약품안전처 식품의약품안전평가원 신종유해물질팀) ;
  • 김용상 (식품의약품안전처 식품의약품안전평가원 신종유해물질팀) ;
  • 이호연 (식품의약품안전처 식품의약품안전평가원 신종유해물질팀) ;
  • 박용춘 (식품의약품안전처 신소재식품과) ;
  • 김상엽 (부산지방식품의약품안전청 유해물질분석팀) ;
  • 최장덕 (식품의약품안전처 식품의약품안전평가원 신종유해물질팀) ;
  • 장영미 (식품의약품안전처 식품의약품안전평가원 신종유해물질팀)
  • Kim, Kyu-Heon (New Hazardous Substance Team, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety) ;
  • Kim, Mi-Ra (New Hazardous Substance Team, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety) ;
  • Park, Young-Eun (New Hazardous Substance Team, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety) ;
  • Kim, Yong-Sang (New Hazardous Substance Team, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety) ;
  • Lee, Ho-Yeon (New Hazardous Substance Team, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety) ;
  • Park, Yong-Chjun (Novel Food Division, Ministry of Food and Drug Safety) ;
  • Kim, Sang Yub (Hazardous Substances Analysis, Busan Regional Korea Food and Drug Administration) ;
  • Choi, Jang Duck (New Hazardous Substance Team, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety) ;
  • Jang, Young-Mi (New Hazardous Substance Team, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety)
  • 투고 : 2014.07.04
  • 심사 : 2014.10.08
  • 발행 : 2014.12.31

초록

본 연구에서는 식육원료 4종(소, 돼지, 말 및 닭)을 각각 판별하기 위하여 real-time PCR을 이용한 판별법을 개발하였다. 종 판별을 위한 유전자로는 미토콘드리아 유전자 중 12S rRNA와 16S rRNA 부분을 대상으로 하였으며, 특이 프로브의 Reporter dye는 FAM, Quencher dye는 TAMRA로 설계하였다. 개발된 프라이머 및 프로브 세트로 유사종에 대한 비 특이적 signal의 생성 유무를 관찰하기 위하여 총 10종을 대상으로 특이성을 확인한 결과, 비특이적 signal은 확인되지 않았다. 식육원료에 대하여 real-time PCR을 통한 식육 판별 시 식육 혼합 방법에 따른 $C^T$값의 유의적인 차이는 없었다. 의도적 혼합 및 비의도적 혼입을 판별하기 위한 정량법 개발에서는 의도적 혼합의 경우 100% 식육과의 $C^T$ 값 차이가 4 cycle 이내이고, 비의도적 혼입일 경우 100% 식육과의 $C^T$ 값 차이가 6 cycle 이상이었다. 따라서 본 연구를 통하여 개발한 식육 원료의 의도적, 비의도적 혼입 판별법은 불량식품 유통 근절 및 소비자 인권보호에 크게 기여할 것으로 기대된다.

In this study, the detection method was developed using real-time PCR to distinguish 4 species (bovine, porcine, horse, and chicken) of raw meats. The genes for distinction of species about meats targeted at 12S rRNA and 16S rRNA parts in mitochondrial DNA. Probes were designed to have a 5' FAM and a TAMRA at the 3' end. This study is to develop 4 species-specific primer and probes about raw materials and real-time PCR on 10 strains to observe the products of non-specific signal for similar species. As a result, any non-specific signal were not detected among each other. Real-time PCR method was developed for quantitation and identification of intentional and unintentional mixture in ground mixed meat (The difference of $C_T$ value between intentional mixture and 100% meat: $${\leq_-}$$ cycles, The difference of $C_T$ value between unintentional mixture and 100% meat: $${\geq_-}$$ cycles). The detection and differentiation of intentional and unintentional mixture in this study would be applied to food safety management for eradication of adulterated food distribution and protection of consumer's right.

키워드

참고문헌

  1. Han S.H.: Special Report-Meat Product, Food Engineering Progress, 103-125 (1990).
  2. Ballin, N.Z.: Authentication of meat and meat products, Meat Science, 86, 577-587 (2010). https://doi.org/10.1016/j.meatsci.2010.06.001
  3. Meyer, R., H felein, C., L thy, J. and Candrian, U.: Polymerase chain reaction-restriction fragment length polymorphism analysis: a simple method for species identification in food, J AOAC Int., 78, 1542-1551 (1995).
  4. 중국공안부 발표/'13.5.
  5. Park Y.C., Kim M.R., Lim J.Y., Park Y.E., Shin J.H., Hwang C.R., Lim J.D., Kim K.H., Lee J.H., Cho T.Y., Lee H.J. and Han S.B.: A Comparison of Gene Extraction Methods for the Identification of Raw materials from Processed Meat Products, J. Fd Hyg. Safety, 27, 146-151 (2012). https://doi.org/10.13103/JFHS.2012.27.2.146
  6. Montiel-Sosa, J.F., Ruiz-Pesini, E., Montoya, J., Roncales, P., Lopez-Perez, M.J. and Perez-Martos, A.: Direct and highly species-specific detection of pork meat and fat in meat products by PCR amplification of mitochondrial DNA, J. Agric Food Chem, 48, 2829-2832 (2000). https://doi.org/10.1021/jf9907438
  7. Fabric, T., Celia, M. and Catherine, H.: Food and forensic molecular identification: update and challenges, TRENDS in Biotech, 23, 359-366 (2005). https://doi.org/10.1016/j.tibtech.2005.05.006
  8. Folmer, O., Black, M., Hoeh, W., Lutz, R. and Vrijenhoek, R.: DNA primers for amplification of mitochondrial cytochrome C oxidase subunit I from diverse metazoan invertebrates, Mol. Mar. Bio. and Biotech., 3, 294-299 (1994).
  9. Jeon Y.J., Kang E.S. and Hong K.W.: A PCR Mrthod for Rapid Detection of Buckwheat Ingredients in Food, J. Korean Soc. Appl. Biol. Chem., 50, 276-280 (2007).
  10. Ballin, N.Z., Vogensen, F.K. and Karlesson, A.H.: Species determination-Can we detect and quantify meat adulteration?, Meat Science, 83, 165-174 (2009). https://doi.org/10.1016/j.meatsci.2009.06.003
  11. Fajardo, V., Gonzalez, I., Rojas, M., Garcia, T. and Martin, R.: A review of current PCR-based methodologies for the authentication of meats from game animal species, Trends in Food Science & Technology, 21, 408-421 (2010). https://doi.org/10.1016/j.tifs.2010.06.002
  12. Koh B.R.D., Kim J.Y., Na H.M., Park S.D. and Kim Y.H.: Development of species-specific multiplex PCR assays of mitochondrial 12S rRNA and 16S rRNA for the identification of animal species, Korean J. Vet. Serv., 34, 297-301 (2011). https://doi.org/10.7853/kjvs.2011.34.4.297
  13. Min D.M., Kim M.Y., Jung S.I., Heo M.S., Kim J.K. and Kim H.Y.: Quantitative Analysis of Genetically Medified Soybean in Processed Foods Using Real-time PCR, Korean J. Food Sci. Technol., 36, 723-727 (2004).
  14. Yun S.C.: Detection of Genetically Modified Genes from Soybean Sprout Products, Korean J. Crop Sci., 49, 227-231 (2004).
  15. Kim J.M., Nam Y.S., Choi J.H., Lee M.A., Jeong J.Y. and Kim C.J.: Identification of Hanwoo (Korean Native Cattle) Beef in Restaurants using Real-time PCR, Korean J. Food Sci. Ani. Resour., 25, 203-209 (2005).
  16. Camma, C., Domenico, M.D. and Monaco, F.: Development and validation of fast Real-time PCR assays for species identification in raw and cooked meat mixtures, Food Control, 23, 400-404 (2011).
  17. Dooley, J.J., Paine, K.E., Garrett, S.D. and Brown, H.M.: Detection of meat species using TaqMan real-time PCR assay, Meat Sci., 68, 431-438 (2004). https://doi.org/10.1016/j.meatsci.2004.04.010
  18. Jonker, K.M., Tilburg, J.J., Hagelea, G.H. and de-Boer, E.: Species identification in meat products using real-time PCR, Food Addit Contamm Part A Chem Anal Control Expo Risk Asswss, 25, 527-533 (2008). https://doi.org/10.1080/02652030701584041
  19. Lopez-Andreo, M., Lugo, L., Garrido-Pertierra, A., Prieto, M.I. and Puyet, A.: Identification and quantitation of species in complex DNA mixtures by real-time PCR, Anal. Biochem., 339, 73-82 (2005). https://doi.org/10.1016/j.ab.2004.11.045
  20. Lopez-Andreo, M., Garrido-Pertierra, A. and Puyet, A.: Evaluation of post-polymerase chain reaction melting temperature analysis for meat species identification in mixed DNA samples, Agric Food Chem., 54, 7973-7978 (2006). https://doi.org/10.1021/jf0615045
  21. Martin, I., Garcia, T., Fajardo, V., Rojas, M., Pegels, N., Hemandez, P.E. and Martin, I.G.: SYBR-Green real-time PCR approach for the detection and quantification of pig DNA in feedstuffs, Meat Sci., 82, 252-259 (2009). https://doi.org/10.1016/j.meatsci.2009.01.023
  22. Walker, J.A., Hughes, D.A., Anders, B.A., Shewale, J., Sinha, S.K. and Batzer, M.A.: Quantitative intra-short interspersed element PCR for species-specific DNA identification, Anal. Biochem., 316, 259-269 (2003). https://doi.org/10.1016/S0003-2697(03)00095-2
  23. Klein, D.: Quantification using real-time PCR technology: Application and limitations, Trends Mol. Med., 8, 257-260 (2002). https://doi.org/10.1016/S1471-4914(02)02355-9
  24. Crockett, A.O. and Wittwer, C.T.: Fluorescein-labeled oligonucleotides for real-time PCR: using the inherent quenching of deoxyguanosine nucleotides, Anal. Biochem., 290, 89-97 (2001). https://doi.org/10.1006/abio.2000.4957
  25. Tanabe, S., Hase, M., Yano, T., Sato, M., Fujimura, T. and Akiyama, H.: A real-time PCR quantitative PCR detection method for pork, chicken, beef, mutton, and horseflesh in foods, Biosci. Biotechnol Biochem., 71, 3131-3135 (2007). https://doi.org/10.1271/bbb.70683
  26. Montiel-Sosa, J.F., Ruiz-Pesini, E., Montoya, J., Roncales, P., Lopez-Perez, M.J. and Perez-Martos, A.: Direct and highly species-specific detection of pork meat and fat in meat products by PCR amplification of mitochondrial DNA, J. Agric. Food Chem., 48, 2829-2832 (2000). https://doi.org/10.1021/jf9907438
  27. Fajardo, V., Gonzalez-Calleja, I., Martín, I., Hernandez, P.E., Garcaa, T. and Martin, R.: PCR-RFLP authentication of meats from red deer (Cervus elaphus), fallow deer (Dama dama), roe deer (Capreolus capreolus), cattle (Bos taurus), sheep (Ovis aries), and goat (Capra hircus), J. Agric. Food Chem., 54, 1144-1150 (2006). https://doi.org/10.1021/jf051766r
  28. Lanzilao, I., Burgalassi, F., Fancelli, S., Settimelli, M. and Fani, R.: Polymerase chain reaction-restriction fragment length polymorphism analysis of mitochondrial cyt b gene from species of dairt interest, J. AOAC Int., 88, 128-135 (2005).
  29. Minh, B. and Zhongchi, L.: Simple allele-discriminating PCR for cost-effective and rapid genotyping and mapping, Plant Methods, 5, 1-8 (2009). https://doi.org/10.1186/1746-4811-5-1
  30. Ha S.J.: Rapid detection of Clostridium difficile by real-time PCR and whole genome amplification (WGA), Kookmin University, (2013).
  31. Kuiper, H.A.: Summary report of the ILSI Europe workshop on detection methods for novel foods derived from genetically modified organism, Food Control, 10, 339-349 (1999). https://doi.org/10.1016/S0956-7135(99)00072-9
  32. Hino, A.: Development of Detection Method for Monitoring of GM Foods, International Symposium on the Genetically Modified Foods, KFDA, 49-52 (2001).
  33. Prado, M., Fumiere, O., Boix, A., Marien, A., Berben, G. and von-Holst, C.: Novel approach for interlaboratory transfer of real-time PCR methods: detecting bovine meat and bone meal in feed, Anal. Bioanal. Chem., 394, 1423-1431 (2009). https://doi.org/10.1007/s00216-009-2796-7
  34. Park Y.C., Ahn C.Y., Jin S.O., Lim J.Y., Kim K.H., Lee J.H., Cho T.Y., Lee H.J., Park K.S. and Yoon H.S.: Identification of Raw Materials in Processed Meat Products by PCR Using Species-Specific Primer, J. Fd Hyg. Safety, 27, 68-73 (2012). https://doi.org/10.13103/JFHS.2012.27.1.068

피인용 문헌

  1. Thermal Stable Soluble Proteins in Pork Fat and Meat, and Their Antigenicity vol.31, pp.6, 2016, https://doi.org/10.13103/JFHS.2016.31.6.445