DOI QR코드

DOI QR Code

Virulence Factor Profiles of Escherichia coli O157:H7 Bacteriophage Isolates from Sewage and Livestock Stools

하수와 가축분변에서 분리된 대장균 O157:H7 박테리오파지의 병원성인자 프로파일

  • Seo, Jina (School of Food Science and Technology, Chung-Ang University) ;
  • Seo, Dong Joo (School of Food Science and Technology, Chung-Ang University) ;
  • Lee, Min Hwa (School of Food Science and Technology, Chung-Ang University) ;
  • Jeon, Su Been (School of Food Science and Technology, Chung-Ang University) ;
  • Oh, Hyejin (School of Food Science and Technology, Chung-Ang University) ;
  • Oh, Mi Hwa (National Institute of Animal Science, Rural Development Administration) ;
  • Choi, Changsun (School of Food Science and Technology, Chung-Ang University)
  • Received : 2014.09.27
  • Accepted : 2014.11.21
  • Published : 2014.12.31

Abstract

The aim of study was to investigate the virulence profile of Escherichia coli O157:H7 bacteriophages isolated from sewage and livestock stools. Among 23 E. coli O157:H7 bacteriophages, 14 strains were isolated from sewage and 9 were from animal stools collected from 10 livestock farms in Korea. For each bacteriophage DNA sample, the presence of stx1, stx2, eae, aafII, ial, elt, estI, estII, astA, afa, and cnf was examined by polymerase chain reaction. The detection rate of eae, stx2, estI, astA, and ial was 100%, 69.6%, 13.0%, 13.0%, 8.7%, respectively. While all E. coli O157:H7 bacteriophages isolated from stools carried eae+stx2, stx2+eae, eae+astA, eae, stx2+eae+estI, eae+estI, stx2+eae+ial, and eae+ial were observed in bacteriophages isolated from sewage. As several plasmid-carrying virulence factors (estI, astA, and ial) were found in E. coli O157:H7 bacteriophages obtained from sewage and stools, the microbial safety of bacteriophages should be investigated in further study.

Keywords

References

  1. Summers, W.C.: Bacteriophages: Biology and application, (Kutter, E., Sulakvelidze, A. eds.) CRC Press, Boca Raton, FL, pp. 5-27 (2000).
  2. Brovko, L.Y., Anany, H., and Griffiths, M.W.: Bacteriophages for detection and control of bacterial pathogens in food and food-processing environment., Adv. Food Nutr. Res., 67, 241-288 (2012). https://doi.org/10.1016/B978-0-12-394598-3.00006-X
  3. Abuladze, T., Li, M., Menetrez, M.Y., Dean, T., Senecal, A., and Sulakvelidze, A.: Bacteriophages reduce experimental contamination of hard surfaces, tomato, spinach, broccoli, and ground beef by Escherichia coli O157:H7, Appl. Environ. Microbiol., 74, 6230-6238 (2008). https://doi.org/10.1128/AEM.01465-08
  4. Carlton, R.M., Noordman, W.H., Biswas, B., de Meester, E.D., and Loessner, M.J.: Bacteriophage P100 for control of Listeria monocytogenes in foods: genome sequence, bioinformatic analyses, oral toxicity study, and application, Regul. Toxicol. Pharmacol., 43, 301-312 (2005). https://doi.org/10.1016/j.yrtph.2005.08.005
  5. Hudson, J.A., Billington, C., Carey-Smith, G., and Greening, G.: Bacteriophages as biocontrol agents in food, J. Food Prot., 68, 426-437 (2005)
  6. O'Brien, A.D., Newland, J.W., Miller, S.F., Holmes, R.K., Smith, H.W., and Formal, S.B.: Shiga-like toxin-converting phages from Escherichia coli strains that cause hemorrhagic colitis or infantile diarrhea, Science, 266, 694-696 (1984).
  7. Cheetham, B.F., and Katz, M.E.: A role for bacteriophages in the evolution and transfer of bacterial virulence determinants. Mol. Microbiol., 18, 201-208 (1995). https://doi.org/10.1111/j.1365-2958.1995.mmi_18020201.x
  8. Waldor, M.K., and Mekalanos, J.J.: Lysogenic conversion by a filamentous phage encoding cholera toxin, Science, 272, 1910-1914 (1996). https://doi.org/10.1126/science.272.5270.1910
  9. Figueroa-Bossi, N., Uzzau, S., Maloriol, D., and Bossi, L.: Variable assortment of prophages provides a transferable repertoire of pathogenic determinants in Salmonella. Mol. Microbiol., 39, 261-271 (2001).
  10. Choi, S.K., Lee, M.H., Lee, B.H., Jung, J.Y., and Choi, C.: Virulence factor profiles of Escherichia coli isolated from pork and chicken meats obtained from retail markets, Korean J. Food Sci. Ani. Resour., 30, 148-153 (2010). https://doi.org/10.5851/kosfa.2010.30.1.148
  11. Lee, G.Y., Jang, H.I., Hwang, I.G., and Rhee, M.S.: Prevalence and classification of pathogenic Escherichia coli isolated from fresh beef, poultry, and pork in Korea, Int. J. Food Microbiol., 134, 196-200 (2009) https://doi.org/10.1016/j.ijfoodmicro.2009.06.013
  12. O'Flynn, G., Ross, R.P., Fitzgerald, G.F., and Coffey, A.: Evaluation of a cocktail of three bacteriophages for biocontrol of Escherichia coli O157:H7. Appl. Environ. Microbiol., 70, 3417-3424 (2004). https://doi.org/10.1128/AEM.70.6.3417-3424.2004
  13. Hudson, J.A., Billington, C., Cornelius, A.J., Wilson, T., On, S.L., Premaratne, A., and King, N.J.: Use of a bacteriophage to inactivate Escherichia coli O157:H7 on beef. Food Microbiol., 36, 14-21 (2013). https://doi.org/10.1016/j.fm.2013.03.006
  14. Hudson, J., Billington, C., Wilson, T., and On, S.: Effect of phage and host concentration on the inactivation of Escherichia coli O157:H7 on cooked and raw beef. Food Sci. Technol. Int., 1-6 (2013).
  15. Martinez-Castillo, A., and Muniesa, M.: Implications of free Shiga toxin-converting bacteriophages occurring outside bacteria for the evolution and the detection of Shiga toxinproducing Escherichia coli, Front. Cell Infect. Microbiol., 4, 46 (2014).
  16. Johansen, B.K., Wasteson, Y., Granum, P.E., and Brynestad, S.: Mosaic structure of Shiga-toxin-2-encoding phages isolated from Escherichia coli O157:H7 indicates frequent gene exchange between lambdoid phage genomes, Microbiology, 147, 1929-1936 (2001).
  17. Miyamoto, H., Nakai, W., Yajima, N., Fujibayashi, A., Higuchi, T., Sato, K., and Matsushiro, A.: Sequence analysis of Stx2-converting phage VT2-Sa shows a great divergence in early regulation and replication regions, DNA Res. 31, 235-240 (1999).
  18. Muniesa, M., de Simon, M., Prats, G., Ferrer, D., Panella, H., and Jofre, J.: Shiga toxin 2-converting bacteriophages associated with clonal variability in Escherichia coli O157:H7 strains of human origin isolated from a single outbreak, Infect. Immun., 71, 4554-4562 (2003) https://doi.org/10.1128/IAI.71.8.4554-4562.2003
  19. Unkmeir, A., and Schmidt, H.: Structural analysis of phageborne stx genes and their flanking sequences in shiga toxinproducing Escherichia coli and Shigella dysenteriae type 1 strains, Infect. Immun., 68, 4856-4864 (2000). https://doi.org/10.1128/IAI.68.9.4856-4864.2000
  20. Wagner, P.L., Acheson, D.W., and Waldor, M.K.: Isogenic lysogens of diverse shiga toxin 2-encoding bacteriophages produce markedly different amounts of shiga toxin, Infect. Immun., 67, 6710-6714 (1999).
  21. Gyles, C.L., Palchaudhuri, S., and Maas, W.K.: Naturally occurring plasmid carrying genes for enterotoxin production and drug resistance. Science. 198,198-199 (1977). https://doi.org/10.1126/science.333581
  22. Takahashi, E., Sultan, Z., Shimada, S., Aung, W.W., Nyein, M.M., Oo, K.N., Nair, G.B., Takeda, Y., and Okamoto, K.: Studies on diarrheagnic Escherichia coli isolated from children with diarrhea in Myanmar, Microbiol. Immunol., 52, 2-8 (2008).
  23. Noguera-Obenza, M., and Cleary, T.G.: Diarrheogenic Escherichia coli, Curr. Probl. Pediatr. 29, 208-216 (1999).
  24. Gamage, S.D., Strasser, J.E., Chalk, C.L., and Weiss, A.A.: Nonpathogenic Escherichia coli can contribute to the production of Shiga toxin, Infect. Immun., 71, 3107-3115 (2003). https://doi.org/10.1128/IAI.71.6.3107-3115.2003
  25. Gamage, S.D., Patton, A.K., Hanson, J.F., and Weiss, A.A.: Diversity and host range of Shiga toxin-encoding phage, Infect. Immun., 72, 7131-7139 (2004). https://doi.org/10.1128/IAI.72.12.7131-7139.2004
  26. McGannon, C.M., Fuller, C.A., and Weiss, A.A.: Different classes of antibiotics differentially influence shiga toxin production, Antimicrob. Agents Chemother., 54, 3790-3798 (2010). https://doi.org/10.1128/AAC.01783-09
  27. Bruttin, A., Brussow, H.: Human volunteers receiving Escherichia coli phage T4 orally: a safety test of phage therapy, Antimicrob. Agents Chemother., 49, 2874-2878 (2005). https://doi.org/10.1128/AAC.49.7.2874-2878.2005
  28. Kutter, E., De Vos, D., Gvasalia, G., Alavidze, Z., Gogokhia, L., Kuhl, S., and Abedon, S.T.: Phage therapy in clinical practice: treatment of human infections, Curr. Pharm. Biotechnol., 11, 69-86 (2010). https://doi.org/10.2174/138920110790725401
  29. Strauch, E., Lurz, R., and Beutin, L.: Characterization of a Shiga toxin-encoding temperate bacteriophage of Shigella sonnei, Infect. Immun., 69, 7588-7595 (2001). https://doi.org/10.1128/IAI.69.12.7588-7595.2001