DOI QR코드

DOI QR Code

다양한 유기계 지지체와 광촉매 Nano-ZnO 복합체를 활용한 1,1,2-trichloroethylene 제거 효율 평가

Evaluation of 1,1,2-trichloroethylene Removal Efficiency Using Composites of Nano-ZnO Photocatalyst and Various Organic Supports

  • 장대규 (과학기술연합대학원대학교 건설.환경공학과) ;
  • 안호상 (한국건설기술연구원 환경연구실) ;
  • 김정연 (한국건설기술연구원 환경연구실) ;
  • 안창혁 (한국건설기술연구원 환경연구실) ;
  • 이새로미 (한국건설기술연구원 환경연구실) ;
  • 김종규 (런던대학교 토목, 환경, 지반공학과) ;
  • 주진철 (한밭대학교 건설환경공학과)
  • Jang, Dae Gyu (Department of Construction&Environment Engineering, Korea University of Science Technology) ;
  • Ahn, Hosang (Korea Institute of Construction Technology, Environmental Research Division) ;
  • Kim, Jeong Yeon (Korea Institute of Construction Technology, Environmental Research Division) ;
  • Ahn, Chang Hyuk (Korea Institute of Construction Technology, Environmental Research Division) ;
  • Lee, Saeromi (Korea Institute of Construction Technology, Environmental Research Division) ;
  • Kim, Jong Kyu (Department of Civil, Environmental, and Geomatic Engineering, University College London) ;
  • Joo, Jin Chul (Department of Civil and Environmental Engineering, Hanbat National University)
  • 투고 : 2014.08.11
  • 심사 : 2014.11.19
  • 발행 : 2014.11.30

초록

본 연구에서는 광촉매 nano-ZnO 분말을 수질정화에 사용 후 회수 공정을 생략하기 위해 지지체에 고정화/안정화 시 발생하는 효율 저하를 유기오염물의 수착(sorption)으로 극복하고 복합체로부터 nano-ZnO의 탈리(detachment) 현상을 방지 하고자 실리콘(silicone), ABS (acrylonitrile-butadiene-styrene), 에폭시(epoxy), 부타디엔 고무(butadiene rubber)를 선정하여 nano-ZnO/Organic composites (NZOCs)를 제조하였다. 또한, 개발된 다양한 NZOCs의 수중 안정성을 규명 하고, 지하수 내 대표적인 난분해성 유기오염물인 1,1,2-trichloroethylene (TCE)를 대상으로 액상에서 제거 실험을 통해 NZOCs의 활용 타당성을 검증하였다. 연구 결과, 내수성실험을 통해 개발된 NZOCs는 수질정화 용도로 장기간 사용이 타당함을 확인하였다. 또한, FE-SEM, EDX, imaging 분석을 통해 Nano-ZnO/Butadiene rubber Composite (NZBC)는 다양한 공극과 균열에 nano-ZnO 분말이 비교적 균질하게 부착된 반면, Nano-ZnO/Silicone Composite (NZSC), Nano-ZnO/ABS Composite (NZAC), Nano-ZnO/Epoxy Composite (NZEC)는 표면에 공극과 균열이 발달되지 않아 불균질한 부착이 이뤄졌음을 확인할 수 있었다. 또한, NZBC는 초기농도 대비 60%의 TCE 수착 능을 보였는데 이는 다른 유기계 지지체와 달리 비결정성 고분자이며, TCE 분자의 소수성 분배가 활발히 발생하였기 때문으로 판단된다. 액상에서 TCE의 제거효율(수착+광분해)은 NZBC가 99% 제거 효율로 가장 우수했으며, 복합체 주입량이 증가할수록 TCE 제거효율이 크게 증가하였다. 이러한 결과는 butadiene rubber의 우수한 수착능과 nano-ZnO의 광촉매 기작이 동시에 발생하였기 때문인 것으로 판단된다. 마지막으로 액상에서 TCE 제거는 선형모델을 활용해서 비교적 잘 모사할 수 있었으며($R^2{\geq}0.936$), NZBC의 총 반응상수($K_{app}$)는 UV에 의한 TCE 분해상수($K_{photolysis}$) 대비 2.64~3.85배로 높은 값으로 확인되어 butadiene rubber가 TCE 수착 효율이 우수하며, 광분해 기작을 억제하지 않는 지지체로 활용 가능한 것으로 판단하였다.

In this study, the various organic supports (i.e., silicone, acrylonitrile-butadiene-styrene, epoxy, and, butadiene rubber) with great sorption capacity of organic contaminants were chosen to develop nano-ZnO/organic composites (NZOCs) and to prevent the detachment of nano-ZnO particles. The water resistance of the developed NZOCs were evaluated, and the feasibility of the developed NZOCs were investigated by evaluating the removal efficiency of 1,1,2-trichloroethylene (TCE) in the aqueous phase. Based on the results from water-resistance experiments, long-term water treatment usage of all NZOCs was found to be feasible. According to the FE-SEM, EDX, and imaging analysis, nano-ZnO/butadiene rubber composite (NZBC) with various sizes and types of porosity and crack was measured to be coated with relatively homogeneously-distributed nano-ZnO particles whereas nano-ZnO/silicone composite (NZSC), nano-ZnO/ABS composite (NZAC), and nano-ZnO/epoxy composite (NZEC) with poorly-developed porosity and crack were measured to be coated with relatively heterogeneously-distributed nano-ZnO particles. The sorption capacity of NZBC was close to 60% relative to the initial concentration, and this result was mainly attributed to the amorphous structure of NZBC, hence the hydrophobic partitioning of TCE to the amorphous structure of NZBC intensively occurred. The removal efficiency of TCE in aqueous phase using NZBC was close to 99% relative to the initial concentration, and the removal efficiency of TCE was improved as the amount of NZBC increased. These results stemmed from the synergistic mechanisms with great sorption capability of butadiene rubber and superior photocatalytic activities of nano-ZnO. Finally, the removal efficiency of TCE in aqueous phase using NZBC was well represented by linear model ($R^2{\geq}0.936$), and the $K_{app}$ values of NZBC were from 2.64 to 3.85 times greater than those of $K_{photolysis}$, indicating that butadiene rubber was found to be the suitable organic supporting materials with enhanced sorption capacity and without inhibition of photocatalytic activities of nano-ZnO.

키워드

참고문헌

  1. Maeda, K., Teramura, K., Lu, D., Takata, T., Saito, N., Inoue, Y. and Domen, K., "Photocatalyst releasing hydrogen from water," Nature, 440(7082), 295(2006). https://doi.org/10.1038/440295a
  2. Chatterjee, D. and Dasgupta, S., "Visible light induced photocatalytic degradation of organic pollutants," J. Photochem. Photobiol. C: Photochem. Rev., 6(2-3), 186-205(2005). https://doi.org/10.1016/j.jphotochemrev.2005.09.001
  3. Yanga, L., Yua, L. E. and Ray, M. B., "Degradation of paracetamol in aqueous solutions by $TiO_2$," Water Res., 42, 3480-3488(2008). https://doi.org/10.1016/j.watres.2008.04.023
  4. Xiang, Q., Yu, J. and Wong, P. K., "Quantitative characterization of hydroxyl radicals produced by various photocatalysts," J. Colloid Interface Sci., 357, 163-167(2011). https://doi.org/10.1016/j.jcis.2011.01.093
  5. Guo, J. F., Ma, B., Yin, A., Fan, K. and Dai, W. L., "Highly stable and efficient Ag/AgCl@$TiO_2$ photocatalyst: Preparation, characterization, and application in the treatment of aqueous hazardous pollutants," J. Hazard. Mater., 211-212, 77-82 (2012). https://doi.org/10.1016/j.jhazmat.2011.11.082
  6. Kim, S. B., Jang, H. T. and Hong, S. C., "Photocatalytic Degradation of Gas-Phase Methanol and Toluene Using Thin-Film $TiO_2$ Photocatalyst: I. Influence of Water Vapor, Molecular Oxygen and Temperature," J. Ind. Eng. Chem., 8(2), 156-161(2002).
  7. Chong, M. N., Jin, B., Chow, C. W. K. and Saint, C., "Recent developments in photocatalytic water treatment technology: A review," Water Res., 44, 2997-3027(2010). https://doi.org/10.1016/j.watres.2010.02.039
  8. Cheng, C., Amini, A., Zhu, C., Xu, Z., Song, H. and Wang, N., "Enhanced photocatalytic performance of $TiO_2$-ZnO hybrid nanostructures," Nature, 4, 4181(2014).
  9. Sheng, F., Xu, C., Jin, Z., Guo, J., Fang, S., Shi, Z. and Wang, J., "Simulation on field enhanced electron transfer between the interface of ZnO-Ag nanocomposite," J. Phys. Chem. C, 117, 18627-18633(2013). https://doi.org/10.1021/jp405186c
  10. Xie J., Wang H., Duan M. and Zhang L.,"Synthesis and photocatalysis properties of ZnO structures with different morphologies via hydrothermal method," Appl. Surface Sci., 257, 6358-6363(2011). https://doi.org/10.1016/j.apsusc.2011.01.105
  11. Selva, R. L., Rajarajeswari, G. R., Selvin, R., Sadasivam, V., Sivasankar, B. and Rengaraj, K., "Sunlight/Zno-mediated photocatalytic degradation of reactive red 22 using thin film flat bed flow photoreactor," Solar Energy, 73(4), 281-285 (2002). https://doi.org/10.1016/S0038-092X(02)00065-8
  12. Behnajady, M. A., Modirshahla, N., Daneshvar, N. and Rabbani, M., "Photocatalytic degradation of C.I. Acid Red 27 by immobilized ZnO on glass plates in continuous-mode," J. Hazard. Mater., 140, 257-263(2007). https://doi.org/10.1016/j.jhazmat.2006.07.054
  13. Comparelli, R., Fanizza, E., Curri, M. L., Cozzoli, P. D., Mascolo, G. and Agostiano, A., "UV-induced photocatalytic degradation of azo dyes by organic-capped ZnO nanocrystals immobilized onto substrates," Appl. Catal. B: Environ., 60, 1-11(2005). https://doi.org/10.1016/j.apcatb.2005.02.013
  14. Oh, J. H., Ahn, H. S., Jang, D. G., Ahn, C. H Lee, S. R. M. and Joo, J. C., "Evaluation on Removal Efficiency of Methylene Blue Using Nano-ZnO/Laponite/PVA Photocatalyzed Adsorption Ball," J. Kor. Soc. Environ. Eng., 35(9), 636-642(2013). https://doi.org/10.4491/KSEE.2013.35.9.636
  15. Kim, H. G., Hwang, D. W., Bae, S. W., Lee, K. H. and Lee, J. S., "Preparation and synthesis of $TiO_2$ coating sol by sol-gel method," Theories Appl. Chem. Eng., 8(2) 2693-696 (2002).
  16. Kim, K. Y., Ryu, J. H., Hahn, B. D., Choi, J. J., Yoon, W. H., Lee, B. K., Park, D. S. and Park, C., "Effect of Film Thickness on the Photocatalytic Performance of $TiO_2$ Film Fabricated by Room Temperature Powder Spray in Vacuum Process," J. Kor. Ceramic Soc., 45(12), 839-844(2008). https://doi.org/10.4191/KCERS.2008.45.1.839
  17. Hanel, A., Moren, P., Zaleska, A. and Hupka, J., "Photocatalytic activity of $TiO_2$ immobilized on glass beads," 0Bphysicochem. Probl. Miner. Process, 45, 49-56(2010).
  18. Bai, B. C., Im, J. S, Kim, J. G. and Lee, Y. S., "Photoatalytic Degradation on B-, C-, N-, and F Element co-doped $TiO_2$ under Visible-light Irradiation," Appl. Chem. Eng., 21(1), 29-33(2010).
  19. Yusoff, N. A., Ong, S. A., Ho, L. N., Wong, Y. S. and Khalik, W. F., "Degradation of phenol through solar-photocatalytic treatment by zinc oxide in aqueous solution," Desalinat. Water Treat., pp. 1-8(2014).
  20. Erdal, S., B. and I., Erman, B., "Swelling of sodium chloride filled polybutadiene networks in water, water/acetone and water/THF mixtures," Polymer, 39(10), 2035-2041(1998). https://doi.org/10.1016/S0032-3861(97)00306-6
  21. Kim, E. J., Park, J. H. and Paik, I. K., "The Study of Water Resistance and Water/Oxygen Barrier Properties of Poly(vinyl alcohol)/Water-soluble Poly(ethylene-co-acrylic acid) Blend Films," Appl. Chem. Eng., 23(2), 217-221(2012).
  22. Eloy-Giorni, C., Pelte, T., Pierson, P. and Margarita, R., "Water diffusion through geomembranes under hydraulic pressure," Geosynthetics Int., 3(6), 741-769(1996). https://doi.org/10.1680/gein.3.0083
  23. Cho, M., Chung, H., Choi, W. and Yoon, J., "Linear correlation between inactivation of E-coli and OH radical concentration in $TiO_2$ photocatalytic disinfection," Water Res., 38(4), 1069-1077(2004). https://doi.org/10.1016/j.watres.2003.10.029
  24. Lakshmi, S., Renganathan, R. and Fujita, S., "Study on $TiO_2$- Mediated Photocatalytic Degradation of Methylene-Blue," J. Photochem. Photobiol., 88(2-3), 163-167(1995). https://doi.org/10.1016/1010-6030(94)04030-6
  25. Lee, B. N., Liaw, W. D. and Lou, J. C., "Photocatalytic decolorization of methylene blue in aqueous $TiO_2$ suspension," Environ. Eng. Sci., 16(3), 165-175(1999). https://doi.org/10.1089/ees.1999.16.165
  26. Turchi, C. S. and Ollis, D. F., "Photocatalytic Reactor Design - an Example of Mass-Transfer Limitations with an Immobilized Catalyst," J. Phys. Chem., 92(23), 6852-6853(1988). https://doi.org/10.1021/j100334a070
  27. Joo, J. C., "Mass transfer Parameters of Volatile Organic Compounds through High density Polyethylene Geo membranes," Korea University, Seoul, Korea, pp. 27-29(2001).
  28. Ashley, R. J., "Permerability and plastic packaging. In Comyn J, ed. Polymer Permeability. London and New York: Elsevier Applied Sci. Publ., pp. 269-308(1986).
  29. Evgenidou, E., Bizani, E., Christophoridis, C. and Fytianos. K.. "Heterogeneous photocatalytic degradation of prometryn in aqueous solutions under UV/Vis irradiation," Chemosphere, 68(10), 1877-1882(2007). https://doi.org/10.1016/j.chemosphere.2007.03.012