DOI QR코드

DOI QR Code

포플러를 이용한 활성탄 제조 시스템에 대한 전과정 평가

Life Cycle Assessment of Activated Carbon Production System by Using Poplar

  • 김미형 (한남대학교 건설시스템공학과) ;
  • 김건하 (한남대학교 건설시스템공학과)
  • Kim, Mihyung (Department of Civil and Environmental Engineering, Hannam University) ;
  • Kim, Geonha (Department of Civil and Environmental Engineering, Hannam University)
  • 투고 : 2014.09.22
  • 심사 : 2014.11.14
  • 발행 : 2014.11.30

초록

식물정화공법(Phytoremediation)은 식물을 이용하여 오염된 토양 또는 폐수의 유해한 오염물질을 흡수, 제거, 안정화, 무독화 시키는 기술을 의미하며, 친환경적, 경제적인 오염정화 방안이다. 포플러는 생장이 빠른 속성수종으로써 수분과 양분을 흡수하는 능력이 우수하여 각종 오염물질을 효과적으로 흡수제거하므로, 유기오염물질, 중금속 등 유해물질 제거에 높은 효율을 보이고 있다. 본 연구에서는 식물정화공법의 부산물로 발생되는 포플러를 원료로 이용한 활성탄 제조시스템을 대상으로 전과정평가 기법에 의해 환경에 미치는 영향을 분석하고자 하였다. 최적의 탄화 및 활성화 조건에서 이동식 소규모의 로터리킬른 회전로를 사용하여 에너지소비를 최소화 하였을 때 환경편익이 가능한 것으로 추정되었다. 시스템경계확장방법을 적용하여 야자각을 원료로 한 활성탄 제조시스템의 환경영향의 회피분석결과 자원고갈을 제외한 환경영향 범주에서 마이너스 효과를 보이므로 잠재적 가능성이 있는 것으로 사료된다.

Phytoremediation is a technology to mitigate the pollutant concentrations such as metals, pesticides, solvents, oils, or others in contaminated water and soils with plants. The plants absorb contaminants through the root and store them in the root, stems, or leaves. Rapid growth trees such as poplar are used to remove low concentrated contaminants eco-friendly and economically in a wide contaminated region. This study was practiced to evaluate an activated carbon production system by using poplar wood discarded after phytoremediation. Life cycle assessment methodology was used to analyze environmental impacts of the system, and the functional unit was one ton of harvested poplar. It was estimated that the small size rotary kiln for activated carbon production from poplar wood had an environmental benefit in optimized conditions to minimize energy consumptions. The results of an avoided environmental impact analysis show that the system contribute to reduce environmental impacts in comparison with activated carbon production from coconut shell.

키워드

참고문헌

  1. Lim, J., Lee, L., Bae, S. and Jeong, Y., "Development of phytoremediation technology in abandoned mine," Korea Forest Service, Daejeon, pp. 1-63(2012).
  2. Jeoung, Y-H., Kim, Y-N., Kim, K-R. and Kim, K-H., "Physiological response and cadmium accumulation of MuS1 transgenic tobacco exposed to high concentration of Cd in soil: Implication to phytoremediation of metal contaminated soil," Kor. J. Soil Sci. Fertilizer, 46(1), 58-64(2013). https://doi.org/10.7745/KJSSF.2013.46.1.058
  3. Koo, Y. B. and Yeo, J. K., "The status and prospect of poplar research in Korea," J. Kor. Energy, 22(2), 1-17(2003).
  4. Shin, K. H., Son, A., Cha, D. k. and Kim, K. W., "Review on risks of perchlorate and treatment technologies," J. Kor. Soc. Environ. Eng., 29(9), 1060-1068(2007).
  5. Aitchison, E. W., Kelley, S. L., Alvarez, P. J. and Schnoor, J. L., "Phytoremediation of 1,4-Dioxane by hybrid poplar trees," Water Environ. Res., 72(3), 313-321(2000). https://doi.org/10.2175/106143000X137536
  6. Chang, S. W., "Phytoremediation study of disel contaminated soil by indigenous poplar tree," J. Kor. Soil Groundwater Environ., 11(5), 51-58(2006).
  7. Ok, Y. S., Kim, S. H., Kim D. Y., Lee, H. N., Lim, S. K. and Kim, J. G., "Feasibility of phytoremediation for metalcontaminated abandoned mining area," Kor. J. Soil Sci. Fertilizer, 36(5), 323-332(2003).
  8. Quinn, J. J., Negari, M. C., Hinchman, R. R., Moos, L. P., Wozniak, J. B. and Gatliff, E. G., "Predicting the effect of deep-rooted hybird poplars on the groundwater flow system at a large-scale phytoremediation site," Int. J. Phytoremediat., 3(1), 41-60(2001). https://doi.org/10.1080/15226510108500049
  9. Robinson, B. H., Mills, T. M., Petit, D., Fung, L. E., Green, S. R. and Clothier, B. E., "Natural and induced cadmiumaccumulation in poplar and willow: Implications for phytoremediation," Plant Soil, 227, 301-306(2000). https://doi.org/10.1023/A:1026515007319
  10. Rugh, C. L., Senedoff, J. F., Meagher, R. B. and Merkle, S. A., "Development of transgenic yellow poplar for mercury phytoremediation," Nature Biotechnol., 16, 925-928(1998). https://doi.org/10.1038/nbt1098-925
  11. Chappell, J., "Phytoremediation of TCE using Populus," EPA, Cincinnati, pp. 1-59(1997).
  12. Lee, J., Zhao, X., Han, J. and Kim, J., "Methane production potential from phytoremediation plant disposal by BMP test," In proceedings of Kor. Soc. Waste Manage, Kor. Soc. Waste Manage., Seoul, 3, p. 743(2013).
  13. EPA (Environmental Protection Agency), "Introduction to phytoremediation," Cincinnati, pp. 1-72(2000).
  14. Kim, J. M., Chung, C. K. and Min, B. H, "A study on development of activated carbons from waste timbers," J. Kor. Inst. Resour. Recycl., 17(6), 68-78(2008a).
  15. Kim, K. S., "Activated carbon and Zeolite," J. Kor. Geo- Environ. Soc., 177, 16-20(1998).
  16. Park, J. S., "A study on adsorption characteristics and economical valuation of activated carbon for water purification," J. Kor. Technol. Soc. Water Waste Water Treatment, 10(2), 69-76(2002).
  17. Sang, H. S. and Cho, I. H., "A study on manufacturing of functional active coal from wastes," In proceedings of Kor. Soc. Ind. Application, Kor. Soc. Ind. Application, pp. 7-22 (2004).
  18. Kim, J. M., Chung, C. K. and Min, B. H., "A study on the optimal condition of producing charcoals to develop activated carbons from a discarded timber," J. Kor. Inst. Resour. Recycl., 17(5), 66-75(2008b).
  19. Alade, A. O., Amuda, O. S. and Bello, M. O., "Life cycle inventory analysis (LCIA) of production of activated carbons from selected agricultural materials," Pollut., 44, 7275-7279 (2012).
  20. Acar, F. N. and Eren, Z., "Removal of Cu(II) ions by activated poplar sawdust (samsun Clone) from aqueous solutions," J. Hazard. Mater, 137(2), 909-914(2006). https://doi.org/10.1016/j.jhazmat.2006.03.014
  21. Shokoohi, R., Vatanpoor, V., Zarrabi, M. and Vatani, A., "Adsorption of acid red 18(AR18) by activated carbon from poplar wood-A kinetic and equilibrium study," E-J. Chem., 7(1), 65-72(2010). https://doi.org/10.1155/2010/958073
  22. Bayer, P., Heuer, E., Karl, U. and Finkel, M., "Economical and ecological comparison of granular activated carbon (GAC) adsorber refill strategies," Water Res., 39, 1719-1728(2005). https://doi.org/10.1016/j.watres.2005.02.005
  23. Hjaila, K., Baccar, R., Sarra, M., Gasol, C. M. and Blanquez, P., "Environmental impact associated with activated carbon preparation from olive-waste cake via life cycle assessment," J. Environ. Manage., 130, 242-247(2013). https://doi.org/10.1016/j.jenvman.2013.08.061
  24. Noijuntira, I. and Kittisuparkorn, P., "Life cycle assessmnet for the activated carbon production by coconut shells and palm-oil shells," The 2nd RMUTP Int Conference 2010, Bangkok, pp. 228-231(2010).
  25. ISO (International Organization for Standardization), "Environmental management-Life cycle assessment-Principles and framework, ISO 14040:2006(E)," Int Organ Standardization, Geneva, pp. 6-16(2006).
  26. ISO (International Organization for Standardization), "Environmental management-Life cycle assessment-Requirement and guidelines, ISO 14044:2006(E)," Int Organ Standardization, Geneva, pp. 6-26(2006).
  27. Chung, C. K., "Utilization of discarded tree debris for commercial production of activated carbon," MAFRA (Ministry of Agriculture, Food and Rural Affairs), Sejong-si, pp. 1-234(2000).
  28. European Commission, "Biochar for carbon sequestration and large-scale removal of greenhouse gases (GHG) from the atmosphere," EP7-ENV-1010, European Commission(2010).
  29. Kim, M. H. and Kim G. H., "Analysis of environmental impacts using LCA for the carcass burial," Kor. Soc. Water Environ., 29(2), 239-246(2013).