DOI QR코드

DOI QR Code

The Effect of Acid Hydrolysis and Enzymatic Saccharification in Bioethanol Production Process Using Fruit Peels

과일껍질을 이용한 바이오에탄올 생산 공정에서 산 가수분해 및 효소당화의 영향

  • Received : 2014.09.16
  • Accepted : 2014.10.22
  • Published : 2014.12.10

Abstract

The acid hydrolysis and enzymatic saccharification were carried out for the production of cellulosic ethanol. The possibility of bio-energy production from tangerine peel and apple and watermelon rind was evaluated by determining the optimum production condition. The optimum conditions for the production of cellulosic ethanol from fruit peel were as follows: the sulfuric acid concentration and reaction time of acid hydrolysis for the ethanol production from an apple rind were 20 wt% and 90 min, respectively. The concentration of sulfuric acid for tangerine peel and a watermelon rind at the hydrolysis time of 60 min were 15 wt% and 10 wt%, respectively. A viscozyme was proven as the best conversion for the ethanol production when using enzymatic saccharification from fruit peels. The optimum enzymatic saccharification time for tangerine peel and apple and watermelon rind were 60, 180, and 120 min, respectively.

산 가수분해공정과 효소당화공정을 이용하여 사과, 귤, 수박껍질로부터 셀룰로오스 에탄올을 생산하고, 그 최적조건을 결정함으로써 과일껍질을 원료로 한 바이오에너지 생산가능성을 평가하고자 하였다. 산 가수분해공정을 이용하여 과일껍질로부터 셀룰로오스 에탄올을 생산하기 위한 최적조건은 사과껍질의 경우 황산농도 20 wt%에서 90 min, 귤껍질과 수박껍질의 경우에는 각각 산 가수분해시간 60 min에서 황산의 농도가 15, 10 wt%인 것으로 나타났다. 효소당화공정을 이용하여 과일껍질로부터 셀룰로오스 에탄올을 생산할 경우 효소로는 Viscozyme이 가장 우수한 전환특성을 나타내었으며, 최적 효소당화시간은 사과껍질(180 min), 귤껍질(60 min), 수박껍질(120 min)인 것을 알 수 있었다.

Keywords

References

  1. D. H. Lim, Bio-ethanol: Requirement and prospect for market expansion, KISTI Market Report, 3, 19-23 (2013).
  2. A. Demirbas, Progress and recent trends in biofuels, Prog. Energ. Combust., 33, 1-18 (2007). https://doi.org/10.1016/j.pecs.2006.06.001
  3. B. C. Saha and M. A. Cotta, Ethanol production from alkaline peroxide pretreated enzymatically saccharified wheat straw, Biotechnol. Progr., 22, 449-453 (2006). https://doi.org/10.1021/bp050310r
  4. B. Hahn-Hagerdal, M. Galbe, M. F. Gorwa-Grauslund, G. Liden, and G. Zacchi, Bio-ethanol-the fuel of tomorrow from the residues of today, Trends Biotechnol., 24, 549-556 (2006). https://doi.org/10.1016/j.tibtech.2006.10.004
  5. S. M. Lee and J. H. Lee, Organic acid and enzyme pretreatment of Laminaria japonica for bio-ethanol production, Appl. Chem. Eng., 23, 164-168 (2012).
  6. S. K. Han, H. S. Shin, S. H. Kim, and H. W. Kim, Effect of waste components on performance of acidogenic fermenter, J. KORRA, 10, 65-70 (2002).
  7. S. J. Park, Y. H. Do, J. S. Choi, Y. H. Yoon, and I. S. Cha, A Study on bio-ethanol production from fruit wastes, Trans. Kor. Hydrog. New Energy Soc., 20, 142-150 (2009).
  8. N. J. Lee, H. S. Kim, I. S. Cha, and J. S. Choi, A study on characteristic of the bio-ethanol produced on fruit wastes for direct ethanol fuel cell(DEFC), Trans. Kor. Hydrog. New Energy Soc., 22, 257-264 (2011).
  9. H. J. Han, H. Li, and S. J. Kim, Ethanol production by synchronous saccharification and fermentation using food wastes, Korean J. Biotechnol. Bioeng., 21, 474-478 (2006).
  10. J. C. Lee, J. H. Kim, H. S. Park, and D. W. Pak, Bioethanol production using batch reactor from food wastes, J. Korean Soc. Environ. Eng., 32, 609-614 (2010).
  11. R. Harun, W. S. Y. Jason, T. Cherrington, and M. K. Danquah, Exploring alkaline pre-treatment of microalgal biomass for bioethanol production, Appl. Energ., 88, 3464-3467 (2011). https://doi.org/10.1016/j.apenergy.2010.10.048
  12. Y. Xue, H. Jameel, R. Phillips, and H. M. Chang, Split addition of enzymes in enzymatic hydrolysis at high solids concentration to increase sugar concentration for bioethanol production, J. Ind. Eng. Chem., 18, 707-714 (2012). https://doi.org/10.1016/j.jiec.2011.11.132
  13. R. Halim, R. Harun, M. K. Danquah, and P. A. Webley, Microalgal cell disruption for biofuel development, Appl. Energ., 91, 116-121 (2012). https://doi.org/10.1016/j.apenergy.2011.08.048
  14. J. Y. Lee, C. Yoo, S. Y. Jun, C. Y. Ahn, and H. M. Oh, Comparison of several methods for effective lipid extraction from microalgae, Bioresour. Technol., 101, S75-S77 (2010). https://doi.org/10.1016/j.biortech.2009.03.058
  15. J. R. Miranda, P. C. Passarinho, and L. Gouveia, Pre-treatment optimization of scenedesmus obliquus microalga for bioethanol production, Bioresour. Technol., 104, 342-348 (2012). https://doi.org/10.1016/j.biortech.2011.10.059
  16. R. Harun and M. K. Danquah, Influence of acid pre-treatment on microalgal biomass for bioethanol production, Process Biochem., 46, 304-309 (2011). https://doi.org/10.1016/j.procbio.2010.08.027
  17. B. Zhang, A. Shahbazi, and L. Wang, Alkali pretreatment and enzymatic hydrolysis of cattails from constructed wetlands, Am. J. Eng. Appl. Sci., 3, 328-332 (2010). https://doi.org/10.3844/ajeassp.2010.328.332
  18. A. M. J. Kootstra, H. H. Beeftink, E. L. Scott, and J. P. M. Sanders, Comparison of dilute mineral and organic acid pretreatment for enzymatic hydrolysis of wheat straw, Biochem. Eng. J., 46, 126-131 (2009). https://doi.org/10.1016/j.bej.2009.04.020
  19. H. S. Kim, N. J. Lee, K. M. Kang, J. I. Cho, I. S Cha, Y. H. Yoon, and J. S. Choi, A study on pretreated of fruit wastes for bio-ethanol production, Proceedings of Spring Conference on the Korea Society for Energy Engineering, April 29-30, Daejeon, Korea (2010).
  20. S. C. Rabelo, R. M. Filho, and A. C. Costa, Lime pretreatment of sugarcane bagasse for ethanol production, Appl. Biochem. Biotechnol., 153, 139-150 (2009). https://doi.org/10.1007/s12010-008-8433-7
  21. J. M. Choi, S. S. Choi, and S. H. Yeom, Bioethanol production from wasted corn stalk from Gangwon province : from enzymatic hydrolysis to fermentation, Appl. Chem. Eng., 23, 326-332 (2012).

Cited by

  1. Design of Pretreatment Process in Cellulosic Ethanol Production vol.26, pp.4, 2015, https://doi.org/10.14478/ace.2015.1069
  2. Optimization of Ethanol Production from Watermelon by Enzyme Treatment vol.50, pp.2, 2014, https://doi.org/10.3746/jkfn.2021.50.2.172