DOI QR코드

DOI QR Code

Preparation and Characterization of PEDOT/PSS Hybrid with Graphene Derivative Wrapped by Water-soluble Polymer

수용성 고분자로 Wrapping된 그래핀 치환체와 PEDOT/PSS 복합체의 합성 및 특성

  • Received : 2014.08.06
  • Accepted : 2014.09.19
  • Published : 2014.12.10

Abstract

We conducted investigation on the hybridization of poly(3,4-ethylenedioxythiophene)/poly(styrene sulfonate) (PEDOT : PSS) with graphene derivative (G-PSS), which has been prepared by wrapping reduced graphene oxide (RGO) with PSS. In situ polymerization of PEDOT/PSS in the presence of G-PSS afforded the PEDOT/PSS and graphene hybrid (GP). The analysis of XPS, IR and Raman spectroscopies for GP showed that PEDOT/PSS was successfully synthesized and hybridized with graphene. Compared to the G-PSS, GP showed an enhanced electrical conductivity of $4.46{\times}10^2S/m$ with a good wter-dispersity.

Reduced graphene oxide (RGO)를 수용성 고분자인 poly(styrene sulfonate) (PSS)로 wrapping한 수분산성 그래핀 치환체인 G-PSS와 전도성 고분자인 poly(3,4-ethylenedioxythiophene)/poly(styrene sulfonate) (PEDOT/PSS)의 복합화에 관하여 연구하였다. G-PSS의 존재 하에서 PEDOT/PSS의 제자리 화학 중합 반응을 수행하여 복합체(GP)를 얻었다. 생성물의 XPS, IR 및 Raman 분석을 통하여 모노머인 EDOT의 중합이 원활하게 진행되어 PEDOT/PSS가 생성됨과 동시에 그래핀과 복합화되었다는 것을 확인할 수 있었다. 또한 GP는 $4.46{\times}10^2S/m$의 전도도를 나타냈으며, 0.5%의 농도까지 물에 분산이 되어 G-PSS보다 전기적 특성 및 수분산성 모두 우수하였다.

Keywords

References

  1. A. K. Geim and K. S. Novoselov, The rise of graphene, Nat. Mater., 6, 183-191 (2007). https://doi.org/10.1038/nmat1849
  2. Y. W. Zhu, S. T. Murali, W. W. Cai, X. S. Li, J. W. Suk, J. R. Potts, and R. S. Ruoff, Graphene and Graphene Oxide: Synthesis, Properties, and Applications, Adv. Mater., 22, 3906-3924 (2010). https://doi.org/10.1002/adma.201001068
  3. J. R. Potts, D. R. Dreyer, C. W. Bielawski, and R. S. Ruoff, Graphene-based polymer nanocomposites, Polymer, 52, 5-25 (2011). https://doi.org/10.1016/j.polymer.2010.11.042
  4. H. Bai, C. Li, and G. Q. Shi, Functional Composite Materials Based on Chemically Converted Graphene, Adv. Mater., 23, 1089-1115 (2011). https://doi.org/10.1002/adma.201003753
  5. S. Kirchmeyer and K. Reuter, Scientific importance, properties and growing applications of poly(3,4-ethylenedioxythiophene), J. Mater. Chem., 15, 2077-2088 (2005). https://doi.org/10.1039/b417803n
  6. F. Louwet, L. Groenendaal, J. Dhaen, J. Manca, J. V. Luppen, E. Verdonck, and L. Leenders, PEDOT/PSS: synthesis, characterization, properties and applications, Synth. Met., 135-136, 115-117 (2003). https://doi.org/10.1016/S0379-6779(02)00518-0
  7. H. S. Yoo and Y. S. Park, Synthesis and Photovoltaic Properties of Conducting Polymers Based on Phenothiazine, Appl. Chem. Eng., 24, 93-98 (2013).
  8. W. J. Hong, Y. X. Xu, G. W. Lu, C. Li, and G. Q. Shi, Transparent graphene/PEDOT-PSS composite films as counter electrodes of dye-sensitized solar cells, Electrochem. Commun., 10, 1555-1558 (2008). https://doi.org/10.1016/j.elecom.2008.08.007
  9. S. B. Bon, L. Valentini, and J. M. Kenny, Preparation of extended alkylated graphene oxide conducting layers and effect study on the electrical properties of PEDOT : PSS polymer composites, Chem. Phys. Lett., 494, 264-268 (2010). https://doi.org/10.1016/j.cplett.2010.06.024
  10. D. H. Yoo, J. H. Kim, and J. H. Kim, Direct synthesis of highly conductive PEDOT:PSS/graphene composites and their applications in energy harvesting systems, Nano Res., 7, 717-730 (2014). https://doi.org/10.1007/s12274-014-0433-z
  11. Y. F. Xu, Y. Wang, J. J. Liang, Y. Huang, Y. F. Ma, X. J. Wan, and Y. S. Chen, A Hybrid Material of Graphene and Poly (3,4-ethyldioxythiophene) with High Conductivity, Flexibility, and Transparency, Nano Res., 2, 343-348 (2009). https://doi.org/10.1007/s12274-009-9032-9
  12. Y. Q. Han, M. X. Shen, Y. Wu, J. J. Zhu, B. Ding, H. Tong, and X. G. Zhang, Preparation and electrochemical performances of PEDOT/sulfonic acid-functionalized graphene composite hydrogel, Synth. Met., 172, 21-27 (2013). https://doi.org/10.1016/j.synthmet.2013.04.001
  13. K. Y. Jo, T. M. Lee, H. J. Choi, J. H. Park, D. J. Lee, D. W. Lee, and B. S. Kim, Stable Aqueous Dispersion of Reduced Graphene Nanosheets via Non-Covalent Functionalization with Conducting Polymers and Application in Transparent Electrodes, Langmuir, 27, 2014-2018 (2011). https://doi.org/10.1021/la104420p
  14. S. Liu, J. F. Ou, Z. P. Li, S. R. Yang, and J. Q. Wang, Layer-by-layer assembly and tribological property of multilayer ultrathin films constructed by modified graphene sheets and polyethyleneimine, Appl. Surf. Sci., 258, 2231-2236 (2012). https://doi.org/10.1016/j.apsusc.2011.09.011
  15. X. Cai, M. S. Lin, S. Z. Tan, W. J. Mai, Y. M. Zhang, Z. W. Lian, Z. D. Lin, and X. J. Zhang, The use of polyethyleneimine- modified reduced graphene oxide as a substrate for silver nanoparticles to produce a material with lower cytotoxicity and long-term antibacterial activity, Carbon, 50, 3407-3415 (2012). https://doi.org/10.1016/j.carbon.2012.02.002
  16. S. W. Kwon, T. Y. Kim, Y. N. Kim, M. H. Byun, Z. Q. Lin, K. S. Suh, D. H. Yoon, and W. S. Yang, Micro-patterns of reduced graphene oxide (RG-O) platelets crafted by a self-assembled template, Soft Matter, 7, 6811-6815 (2011). https://doi.org/10.1039/c1sm05761h
  17. H. J. Gao, S. H. Zhang, F. Lu, H. Jia, and L. Q. Zheng, Aqueous dispersion of graphene sheets stabilized by ionic liquid-based polyether, Colloid Polym. Sci., 290, 1785-1791 (2012). https://doi.org/10.1007/s00396-012-2720-0
  18. S. Stankovich, R. D. Piner, X. Q. Chen, N. Q. Wu, S. T. Nquyen, and R. S. Ruoff, Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate), J. Mater. Chem., 16, 155-158 (2006). https://doi.org/10.1039/b512799h
  19. J. C. Wang, T. N. Zhou, H. Deng, F. Chen, K. Wang, Q. Zhang, and Q. Fu, An environmentally friendly and fast approach to prepare reduced graphite oxide with water and organic solvents solubility, Colloids Surf., B, 101, 171-176 (2013). https://doi.org/10.1016/j.colsurfb.2012.06.008
  20. Y. Q. Liu, L. Gao, J. Sun, Y. W, and J. Zhang, Stable Nafion-functionalized graphene dispersions for transparent conducting films, Nanotechnology, 20, 465605-465611 (2009). https://doi.org/10.1088/0957-4484/20/46/465605
  21. L. K. H. Trang, T. T. Tung, T. Y. Kim, W. S. Yang, H. K. Kim, and K. S. Suh, Preparation and characterization of graphene composites with conducting polymers, Polym. Int., 61, 93-98 (2012). https://doi.org/10.1002/pi.3152
  22. B. Yin, Q. Liu, L. Y. Yang, X. M. Wu, Z. F. Liu, Y. L. Hua, S. G. Yin, and Y. S. Chen, Buffer Layer of PEDOT : PSS/Graphene Composite for Polymer Solar Cells, J. Nanosci. Nanotechnol., 10, 1934-1938 (2010). https://doi.org/10.1166/jnn.2010.2107
  23. Y. J. Jeong, B. C. Moon, M. C. Jang, and Y. S. Kim, Preparation and Characterization of Conducting Polymer Nanocomposites Including Graphene Oxide via In-situ Chemical Polymerization, Polymer (Korea), 38, 180-187 (2014). https://doi.org/10.7317/pk.2014.38.2.180
  24. S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammers, Y. Y. Jia, Y. Wu, S. T. Nguyen, and R. S. Ruoff, Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide, Carbon, 45, 1558-1565 (2007). https://doi.org/10.1016/j.carbon.2007.02.034

Cited by

  1. Comparative Studies on Three Kinds of Reductants Applicable for the Reduction of Graphene Oxide vol.26, pp.1, 2015, https://doi.org/10.14478/ace.2014.1127
  2. Study on the Oxidative Polymerization of EDOT Induced by Graphene Oxide vol.27, pp.1, 2016, https://doi.org/10.14478/ace.2015.1119
  3. Study on the Thermal Stability of PEDOT/PSS Film Hybrided with Graphene Oxide vol.27, pp.4, 2016, https://doi.org/10.14478/ace.2016.1050
  4. Novel Approach to Introduce Alkyl Chains into PEDOT:PSS and Its Effect on the Performance as a Flexible Electrode vol.11, pp.14, 2014, https://doi.org/10.3390/app11146605
  5. Experimental and Numerical Investigation of Pool Boiling Heat Transfer over Different Thickness of Graphene-Poly(3,4-Ethylenedioxythiophene):Poly(Styrenesulfonate) Layers on Copper Heater Surface vol.42, pp.13, 2021, https://doi.org/10.1080/01457632.2020.1777013