References
- Porter AE, Taak P, Hobbs LW, Coathup MJ, Blunn GW, Spector M. Bone bonding to hydroxyapatite and titanium surfaces on femoral stems retrieved from human subjects at autopsy. Biomaterials 2004;25:5199-208. https://doi.org/10.1016/j.biomaterials.2003.12.018
- Xu L, Pan F, Yu G, Yang L, Zhang E, Yang K. In vitro and in vivo evaluation of the surface bioactivity of a calcium phosphate coated magnesium alloy. Biomaterials 2009;30:1512-23. https://doi.org/10.1016/j.biomaterials.2008.12.001
- Ibasco S, Tamimi F, Meszaros R, Nihouannen DL, Vengallatore S, Harvey E, Barralet JE. Magnesium-sputtered titanium for the formation of bioactive coatings. Acta Biomater 2009;5: 2338-47. https://doi.org/10.1016/j.actbio.2009.03.006
- Staiger MP, Pietak AM, Huadmai J, Dias G. Magnesium and its alloys as orthopedic biomaterials: a review. Biomaterials 2006;27:1728-34. https://doi.org/10.1016/j.biomaterials.2005.10.003
- Zreiqat H, Howlett CR, Zannettino A, Evans P, Schulze- Tanzil G, Knabe C, Shakibaei M. Mechanisms of magnesium- stimulated adhesion of osteoblastic cells to commonly used orthopaedic implants. J Biomed Mater Res 2002;62:175-84. https://doi.org/10.1002/jbm.10270
- Lorenz C, Brunner JG, Kollmannsberger P, Jaafar L, Fabry B, Virtanen S. Effect of surface pre-treatments on biocompatibility of magnesium. Acta Biomater 2009;5:2783-9. https://doi.org/10.1016/j.actbio.2009.04.018
- Na Y, Heo SJ, Kim SK, Koak JY. Implant surface treatments affect gene expression of Runx2, osteogenic key marker. J Adv Prosthodont 2009;1:91-6. https://doi.org/10.4047/jap.2009.1.2.91
- Zreiqat H, Howlett CR, Zannettino A, Evans P, Knabe C, Schulze-Tanzil G, Shakiabei GM. Surface modification of bioceramics affect osteoblastic cells response. Key Eng Mater 2003;240-242:707-10. https://doi.org/10.4028/www.scientific.net/KEM.240-242.707
- Sampaio BV, Göller G, Oktar FN, Valério P, Goes A, Leite MF. Biocompatibility evaluation of three different titaniumhydroxyapatite composites. Key Engin Mater 2005;284-286: 639-42. https://doi.org/10.4028/www.scientific.net/KEM.284-286.639
- Hashimoto Y, Kusunoki M, Hatanaka R, Hamano K, Nishikawa H, Hosoi Y, Hontsu S, Nakamura M. Improvement of hydroxyapatite deposition on titanium dental implant using ArF laser ablation: effect on osteoblast biocompatibility in vitro. Adv Sci Technol 2006;49:282-9. https://doi.org/10.4028/www.scientific.net/AST.49.282
- Hulshoff JE, van Dijk K, van der Waerden JP, Wolke JG, Kalk W, Jansen JA. Evaluation of plasma-spray and magnetron- sputter Ca-P-coated implants: an in vivo experiment using rabbits. J Biomed Mater Res 1996;31:329-37. https://doi.org/10.1002/(SICI)1097-4636(199607)31:3<329::AID-JBM6>3.0.CO;2-O
- Barrère F, van der Valk CM, Dalmeijer RA, Meijer G, van Blitterswijk CA, de Groot K, Layrolle P. Osteogenecity of octacalcium phosphate coatings applied on porous metal implants. J Biomed Mater Res A 2003;66:779-88.
- Lian JB, Stein GS. The developmental stages of osteoblast growth and differentiation exhibit selective responses of genes to growth factors (TGF beta 1) and hormones (vitamin D and glucocorticoids). J Oral Implantol 1993;19:95-105.
- El-Ghannam A, Ducheyne P, Shapiro IM. Porous bioactive glass and hydroxyapatite ceramic affect bone cell function in vitro along different time lines. J Biomed Mater Res 1997;36: 167-80. https://doi.org/10.1002/(SICI)1097-4636(199708)36:2<167::AID-JBM5>3.0.CO;2-I
- Wan T, Aoki H, Hikawa J, Lee JH. RF-magnetron sputtering technique for producing hydroxyapatite coating film on various substrates. Biomed Mater Eng 2007;17:291-7.
Cited by
- Histological and Histomorphometrical Evaluation of Postextractive Sites Grafted with Mg-Enriched Nano-Hydroxyapatite: A Randomized Controlled Trial Comparing 4 Versus 12 Months of Healing vol.18, pp.5, 2015, https://doi.org/10.1111/cid.12381
- nanotubes for improved bone formation in osteoporotic rabbits vol.4, pp.8, 2016, https://doi.org/10.1039/C5TB01956G
- Novel Bio-functional Magnesium Coating on Porous Ti6Al4V Orthopaedic Implants: In vitro and In vivo Study vol.7, pp.2045-2322, 2017, https://doi.org/10.1038/srep40755
- The effect of Mg-Ca-Sr alloy degradation products on human mesenchymal stem cells pp.15524973, 2017, https://doi.org/10.1002/jbm.b.33869
- Thermal Oxide Layer Enhances Crystallinity and Mechanical Properties for Plasma-Sprayed Hydroxyapatite Biomedical Coatings vol.12, pp.30, 2013, https://doi.org/10.1021/acsami.0c05035
- Effect of Magnesium on Dentinogenesis of Human Dental Pulp Cells vol.2021, pp.None, 2013, https://doi.org/10.1155/2021/6567455
- Effect of Magnesium-Based Coatings on Titanium or Zirconia Substrates on Bone Regeneration and Implant Osseointegration- A Systematic Review vol.8, pp.None, 2021, https://doi.org/10.3389/fmats.2021.754697
- Alkali-Treated Titanium Coated with a Polyurethane, Magnesium and Hydroxyapatite Composite for Bone Tissue Engineering vol.11, pp.5, 2021, https://doi.org/10.3390/nano11051129