DOI QR코드

DOI QR Code

Factors Affecting In Vitro Minimal Growth Conservation of Sedum sarmentosum

돌나물의 기내 활성보존에 영향하는 요인

  • Lee, Seung Yeob (Institute of Life Science and Natural Resources, Wonkwang University) ;
  • Kwon, Tae Oh (Institute of Life Science and Natural Resources, Wonkwang University)
  • 이승엽 (원광대학교 생명자원과학연구소) ;
  • 권태오 (원광대학교 생명자원과학연구소)
  • Received : 2013.05.09
  • Accepted : 2013.08.27
  • Published : 2013.09.30

Abstract

For in vitro minimal-growth conservation of S. sarmentosum, the in vitro shoots with 10 mm length were cultured on Murashige and Skoog's media (MS) containing different levels of agar (0.8, 1.2, 1.6, 2%), Gelrite (0.4, 0.6, 0.8, 1%), ABA (0, 5, 10, $20mg{\cdot}L^{-1}$), and sucrose (2, 3, 6, and 9%) without subculture at $4^{\circ}C$ and $25^{\circ}C$. All media were supplemented with $0.2mg{\cdot}L^{-1}$ BA, agar and Gelrite media, with 5% sucrose, sucrose media, with 1.2% agar, and ABA media, with 5% sucrose and 1.2% agar, respectively. In vitro minimal-growth conservation in room-temperature ($25^{\circ}C$) was effective in the media containing with $10mg{\cdot}L^{-1}$ ABA or 1.6% agar, and the healthy plantlets could be preserved for 10 months without subculture. After 12 months at $4^{\circ}C$, survival rate was 100% in all media. The in vitro minimal-growth conservation in low temperature ($4^{\circ}C$) was effective in the media containing with $10mg{\cdot}L^{-1}$ ABA or 6% sucrose, and the healthy plantlets could be preserved over 18 months without subculture. Especially, long-term conservation using minimal growth of S. sarmentosum was much more efficient in the medium containing high level sucrose at $4^{\circ}C$ compared to others.

돌나물 유전자원의 기내 활성보존을 위하여, 10mm 크기의 기내배양 shoot를 agar, Gelrite, ABA 및 sucrose 농도를 달리한 MS 배지에 치상하여, $4^{\circ}C$$25^{\circ}C$에서 계대배양 없이 보존하였다. 배지는 $0.2mg{\cdot}L^{-1}$ BA를 기본으로 첨가하였고, agar와 Gelrite 배지에는 5% sucrose, ABA 배지에는 5% sucrose와 1.2% agar, sucrose 배지에는 1.2% agar를 각각 첨가하였다. 상온 활성보존($25^{\circ}C$)에서 sucrose와 Gelrite 배지는 생장억제 효과가 거의 없었고, $0.2mg{\cdot}L^{-1}$ BA + $10mg{\cdot}L^{-1}$ ABA + 1.2% agar, 또는 $0.2mg{\cdot}L^{-1}$ BA + 1.6% agar를 첨가한 배지가 효과적이었으며, 계대배양 없이 10개월까지 활성보존이 가능하였다. 저온 활성보존($4^{\circ}C$)에서 12개월후 생존율은 모든 배지에서 100%였으며, $10mg{\cdot}L^{-1}$ ABA, 또는 6% sucrose 첨가배지에서 계대배양 없이 18개월 이상의 활성보존이 가능하였다. 특히 고농도 sucrose 배지는 저온 활성보존($4^{\circ}C$)에서 돌나물 유전자원의 장기간 활성유지에 가장 효과적이었다.

Keywords

References

  1. Akdemir, H., E. Kaya, and Y. Ozden. 2010. In vitro proliferation and minimum growth storage of fraser photinia: Influences of different medium, sugar combinations and culture vessels. Sci. Hort. 126:268-275. https://doi.org/10.1016/j.scienta.2010.07.005
  2. Belokurova V.B. 2010. Methods of biotechnology in system of efforts aimed at plant biodiversity preservation (Review). Cytol. Genet. (Russ.) 44:174-185. https://doi.org/10.3103/S0095452710030096
  3. Bertrand-Desbrunais, A., M. Noirt, and A. Charrier. 1992. Slow growth in vitro conservation of coffee (Coffee spp.). Plant Cell Tiss. Org. Cult. 31: 105-110. https://doi.org/10.1007/BF00037693
  4. Cho, H.M., J.Y. Lee, and K.W. Park. 1998. In vitro long term conservation of potato germplasms. Kor. J. Hort. Sci. Tech. 16:508-510.
  5. Dussert, S., N. Chabrillange, F. Anthony, F. Engelmann, C. Recalt, and S. Hamon. 1997. Variability in storage response within a coffee (Coffea spp.) core collection under slow growth conditions. Plant Cell Rep. 16:344-348.
  6. Gopal, J. and N.S. Chauhan. 2010. Slow growth in vitro conservation of potato germplasm at low temperature. Potato Res. 53:141-149. https://doi.org/10.1007/s11540-010-9158-x
  7. Gopal, J., A. Chamail, and D. Sarkar. 2002. Slow-growth in vitro conservation of potato germplasm at normal propagation temperature. Potato Res. 45:203-213. https://doi.org/10.1007/BF02736115
  8. Gopal J., A. Chamail, and D. Sarkar. 2004. In vitro production of microtubers for conservation of potato germplasm: Effect of genotype, abscisic acid, and sucrose. In Vitro Cell. Dev. Biol. -Plant 40:485-490. https://doi.org/10.1079/IVP2004540
  9. Gopal, J., K. Iwama, and Y. Jitsuyama. 2008. Effect of water stress mediated through agar on in vitro growth of potato. In Vitro Cell. Dev. Biol. -Plant 44:221-228. https://doi.org/10.1007/s11627-007-9102-1
  10. Islam, M.T., D.P. Dembele, and E.R.J. Keller. 2005. Influence of explant, temperature and different culture vessels on in vitro culture for germplasm maintenance of four mint accessions. Plant Cell Tiss. Org. Cult. 81:123-130. https://doi.org/10.1007/s11240-004-3307-3
  11. Kang, T.H., H.O. Pae, J.C. Yoo, N.Y. Kim, Y.C. Kim, G.I. Ko, and H.T. Chung. 2000. Antiproliferative effects of alkaloids effects from Sedum sarmentosum on murine and human hepatoma cell line. J. Ethnopharmacol. 70:177-182. https://doi.org/10.1016/S0378-8741(99)00164-6
  12. Kovalchuk, I., Y. Lyudvikova, M. Volgina, and B.M. Reed. 2009. Medium, container and genotype all influence in vitro cold storage of apple germplasm. Plant Cell Tiss. Org. Cult. 96:127-136. https://doi.org/10.1007/s11240-008-9468-8
  13. Marino, G., P. Negri, A. Cellini, and A. Masia. 2010. Effect of carbohydrates on in vitro low-temperature storage of shoot cultures of apricot. Sci. Hort. 126:434-440. https://doi.org/10.1016/j.scienta.2010.08.008
  14. Morata B.R., A. Arrillaga, and J. Segura. 2006. In vitro storage of cedar shoot cultures under minimal growth conditions. Plant Cell Rep. 25:636-642. https://doi.org/10.1007/s00299-006-0129-2
  15. Murashige, T. and F. Skoog. 1962. A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol. Plant 15:473-497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
  16. Park, Y.J., M.H. Kim, and S.J. Bae. 2002. Enhancement of anticarcinogenic effect by combination of Sedum sarmentosum Bunge with Platycodon grandiflorum A. extracts. Kor. Soc. Food Sci. Nutr. 31:136-142. https://doi.org/10.3746/jkfn.2002.31.1.136
  17. Reed, B.M. 1992. Cold storage of strawberries in vitro: a comparison of three storage systems. Fruit Var. J. 46:98-102.
  18. Reed, B.M. 2002. Photoperiod improves long-term survival of in vitro-stored strawberry plantlets. HortScience 37:811-814.
  19. Sarkar, D. and P.S. Naik. 1998. Factors affecting minimal growth conservation of potato microplants in vitro. Euphytica 102:275-280. https://doi.org/10.1023/A:1018309300121
  20. Shibli, R.A., M.A.L. Smith, and L.A. Spomer. 1992. Osmotic adjustment and growth responses of three (Chrysanthemum morifolium Ramat) cultivars to osmotic stress induced in vitro. J. Plant Nutr. 15:1373-1381. https://doi.org/10.1080/01904169209364404
  21. Souza, F.V.D., T.L. Soares, J.R.S. Cabral, D.H. Reinhardt, J.L. Cardoso, and D.A. Benjamin. 2005. Slow-growth conditions for the in vitro conservation of pineapple germplasm. Acta Hort. 702:41-45.
  22. Watt M.P., N.L. Thokoane, D. Mycock, and F. Blakeway. 2000. In vitro storage of Eucalyptus grandis germplasm under minimal growth conditions. Plant Cell Tiss. Org. Cult. 61:161-164. https://doi.org/10.1023/A:1006447506869
  23. Westcott, R.J., 1981. Tissue culture storage of potato germplasm. 1. Minimal growth storage. Potato Res. 24:331-342. https://doi.org/10.1007/BF02360370
  24. Wilson, S.B., N.C. Rajapakse, and R.E. Young. 2000. Media composition and light affect storability and poststorage recovery of micropropagated hosta plantlets. HortScience 35:1159-1162.
  25. Wang, P.J. and A. Charles. 1991. Micropropagation through meristem culture. p. 32-52. In; Bajaj, Y.P.S. (Ed). Biotechnology in agriculture and forestry. High Tech and micropropagation. vol. 17. Springer, Berlin Heidelberg New York.