DOI QR코드

DOI QR Code

Optimization of Coho Salmon Hydrolysate Using Japanese Squid Liver and Its Properties

일본산 오징어 간을 이용한 은연어 가수분해물 제조의 최적화와 가수분해물의 특성

  • 이수선 (경상대학교 해양식품공학과/해양산업연구소) ;
  • 박주동 (CJ 제일제당 식품연구소) ;
  • ;
  • 최영준 (경상대학교 해양식품공학과/해양산업연구소)
  • Received : 2013.07.30
  • Accepted : 2013.09.11
  • Published : 2013.11.30

Abstract

In this study, the optimal conditions for salmon hydrolysate using squid liver and compositional properties of hydrolysate were investigated. The optimal conditions were $55^{\circ}C$, pH 5.5 and 0.66~0.67% (w/w) in the ratio of squid liver to acidic and thermal treated salmon muscle. The free amino acid of hydrolysate from the acidic treated salmon muscle was higher than that of hydrolysate from the thermal treated salmon muscle, while the total amino acid and mineral were high in the acidic treated salmon muscle. Furthermore, cadmium of hydrolysate from the thermal denatured salmon muscle was below 2 ppm, and has an acceptable level as potential ingredient. The distribution of peptide molecular weight was 40.0% for 1.0~9.5 kDa, 6.7% for 0.5 kDa, and 47.4% of others in hydrolysate from the thermal treated salmon muscle. Both hydrolysates did not show any toxicity against the HepG2 cell line for up to $200{\mu}g/mL$.

본 연구는 오징어 간에 분포하는 효소를 활용한 은연어 육가수분해물 제조의 최적 조건과 생성된 가수분해물의 식품 및 생물 활성 특성을 조사하였다. 가열 처리한 은연어 육가수분해물 제조의 최적 조건은 가수분해 온도 $55^{\circ}C$, pH 5.5, 오징어 간의 첨가 비율 0.67%이었다. 총 구성 아미노산은 함량은 가열 및 산 처리 가수분해물에서 유의적인 차이를 보이지 않았으나, 총 유리 아미노산 함량은 조성은 산 처리가수분해물이 높았다. 한편 무기질 함량은 가열 처리 가수분해물이 높았다. Cd의 허용 기준을 고려할 때 가수분해물 제조 시 전처리 공정은 가열이 적합한 것으로 나타났다. 가열 처리한 가수분해물의 분자량은 1,000~9,500 Da이 40.0%, 500 Da이 6.7%, 200~250 Da은 12.6%, 그 이외 분자량 물질이 34.8%인 반면, 산 처리 가수분해물은 450~5,600 Da이 40.9%, 200~300 Da이 16.8%, 그 이외의 분자량이 42.3%에 해당하였다. 가수분해물은 $200{\mu}g/mL$의 농도에서 HepG2 세포에 대한 독성은 관측되지 않았다. 가수분해물의 잠재적인 적용 분야를 확인하기 위해 식품 및 건강 기능성에 대한 연구를 진행하고 있는 중이다.

Keywords

References

  1. Hossain MA, Alikhan MA, Ishihara T, Hara K, Osatomi K, Osaka K, Nazaki Y. 2004. Effect of proteolytic squid protein hydrolysate on the state of water and denaturation of lizardfish (Saurida wanieso) myofibrillar protein during freezing. Innovative Food Sci Emerging Technol 5: 73-79. https://doi.org/10.1016/j.ifset.2003.10.005
  2. Gbogouri GA, Linder M, Fanni J, Parmentier M. 2004. Influence of hydrolysis degree on the functional properties of salmon byproducts hydrolysates. J Food Sci 69: C615-C622. https://doi.org/10.1111/j.1365-2621.2004.tb09909.x
  3. Bueno-Solano C, Lopez-Cervanters J, Campas-Baypoli ON, Lauterio-Garcia R, Adan-Bante NP, Sanchez-Machado DI. 2009. Chemical and biological characteristics of protein hydrolysates from fermented shrimp by-products. Food Chem 112: 671-675. https://doi.org/10.1016/j.foodchem.2008.06.029
  4. Fahmi A, Morimura S, Guo HC, Shigematsu T, Kida K, Uemura Y. 2004. Production of angiotensin I converting enzyme inhibitory peptides from sea bream scales. Process Biochem 39: 1195-1200. https://doi.org/10.1016/S0032-9592(03)00223-1
  5. Bougatef A, Nedjar-Arroume N, Ravallec-Ple R, Leroy Y, Guillochon D, Barkia A, Nasri M. 2008. Angiotensin I-converting enzyme (ACE) inhibitory activities of sardinella (Sardinella aurita) by-products protein hydrolysates obtained by treatment with microbial and visceral fish serine proteases. Food Chem 111: 350-356. https://doi.org/10.1016/j.foodchem.2008.03.074
  6. Gimenez B, Aleman A, Montero P, Gomez-Guillen MC. 2009. Antioxidant and functional properties of gelatin hydrolysates obtained from skin of sole and squid. Food Chem 114: 976-983. https://doi.org/10.1016/j.foodchem.2008.10.050
  7. Je JY, Lee KH, Lee MH, Ahn CB. 2009. Antioxidant and antihypertensive protein hydrolysates produced from tuna liver by enzymatic hydrolysis. Food Res Int 42: 1266-1272. https://doi.org/10.1016/j.foodres.2009.06.013
  8. Jun SY, Park PJ, Jung WK, Kim SK. 2004. Purification and characterization of an antioxidative peptide from enzymatic hydrolysate of yellowfin sole (Limanda aspera) frame protein. Eur Food Res Technol 219: 20-26. https://doi.org/10.1007/s00217-004-0882-9
  9. Cudennec B, Ravallec-Ple R, Courois E, Fouchereau-Peron M. 2008. Peptides from fish and crustacean by-products hydrolysates stimulate cholecystokinin release in STC-1 cells. Food Chem 111: 970-975. https://doi.org/10.1016/j.foodchem.2008.05.016
  10. Hatate H, Tanaka R, Suzuki N, Hama Y. 2000. Comparison of protease activity in liver among several species of squid and cuttlefish. Fish Sci 66: 182-183. https://doi.org/10.1046/j.1444-2906.2000.00031.x
  11. Cardenas-Lopez JL, Haard NF. 2005. Cysteine proteinase activity in jumbo squid (Dosidicus gigas) hepatopancreas extracts. J Food Biohem 29: 171-186. https://doi.org/10.1111/j.1745-4514.2005.00009.x
  12. Komai T, Kawabata C, Tojo H, Gocho S, Ichishima E. 2007. Purification of serine carboxypeptidase from the hepatopancreas of Japanese common squid Todarodes pacificus and its application for elimination of bitterness from bitter peptides. Fish Sci 73: 404-411. https://doi.org/10.1111/j.1444-2906.2007.01348.x
  13. Kim HS, Kim JS, Heu MS. 2008. Fractionation of endoprotease from viscera of the Argentina shortfin squid Illex argentinus. J Kor Fish Soc 41: 176-181. https://doi.org/10.5657/kfas.2008.41.3.176
  14. Yamashita M, Konagaya S. 1990. High activities of cathepsins B, D, H and L in the white muscle of chum salmon in spawning migration. Comp Biochem Physiol Part B: Comp Biochem 95: 149-152.
  15. Xu W, Yu G, Xue C, Xue Y, Ren Y. 2008. Biochemical changes associated with fast fermentation of squid processing by-products for low salt fish sauce. Food Chem 107:1597-1604. https://doi.org/10.1016/j.foodchem.2007.10.030
  16. Hayashi M, Okumura J, Ichishima E. 1996. Enzymatic production of f 5'-deoxyribonucleotides from salmon milt. Food Res Int 29: 751-755. https://doi.org/10.1016/S0963-9969(97)00004-5
  17. Kurihara H, Togawa H, Hatano M. 1993. Concentration of cadmium in livers of several kinds of squids and an approach to its elimination. Bull Fac Fish Hokkaido Univ 44:32-38.
  18. Carton I, Bocker U, Ofstad R, Sorheim O, Kohler A. 2009. Monitoring secondary structural changes in salted and smoked salmon muscle myofiber proteins by FT-IR microspectroscopy. J Agric Food Chem 57: 3563-3570. https://doi.org/10.1021/jf803668e
  19. AOAC. 1990. Official method of analysis of AOAC Intl. 15th ed. Association of Official Analytical Communities, Arlington, VA, USA. Method 900.02A, 955.04, 950.46, 968.08.
  20. Folch J, Lees M, Sloane Stanley GH. 1957. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 226: 497-509.
  21. Spies JR. 1957. Colorimetric procedure for determination of amino acid. In Methods in Enzymology III. Colowick SP, Kaplan NO, eds. Academic press, New York, NY, USA. p 467-477.
  22. Pyeun JH, Choi YJ, Kim JH, Cho KO. 1984. Postmortem changes of the protein and amino acid composition of muscles in the partially frozen prawn, Pandalus japonica. Bull Korean Fish Soc 17: 280-290.
  23. Lowry OH, Rosebrough NJ, Farr Lewis A, Randall RJ. 1951. Protein measurement with Folin phenol reagent. J Biol Chem 193: 256-275.
  24. Udomsil N, Rodtong S, Choi YJ, Hua Y, Yongsawatdigul J. 2011. Use of Tetragenococcus halophilus as a starter culture for flavor improvement in fish sauce fermentation. J Agric Food Chem 59: 8401-8408. https://doi.org/10.1021/jf201953v
  25. Suyma M, Kounosu S, Hamabe M, Okuda Y. 1980. Utilization of suquid. Kouseisha kouseikaku, Tokyo, Japan. p 81-89.
  26. Konno K, Yamamoto T, Takahashi M, Kato S. 2000. Early structural changes in myosin rod upon heating of carp myofibrils. J Agric Food Chem 48: 4905-4909. https://doi.org/10.1021/jf990479i
  27. Cui C, Zhou X, Zhao M, Yang B. 2009. Effect of thermal treatment on the enzymatic hydrolysis of chicken proteins. Innovative Food Sci Emerging Technol 10: 37-41. https://doi.org/10.1016/j.ifset.2008.09.003
  28. Choi YJ, Park JW. 2002. Acid-aided protein recovery from enzyme-rich Pacific whiting. J Food Sci 67: 2962-2969. https://doi.org/10.1111/j.1365-2621.2002.tb08846.x
  29. Kim YS, Park JW, Choi YJ. 2003. New approaches for the effective recovery of fish proteins and their physicochemical characteristics. Fish Sci 69: 1231-1239. https://doi.org/10.1111/j.0919-9268.2003.00750.x
  30. Chen YN. 2010. Study on the enzymatic properties of proteases squid liver and production of digestive peptides. PhD Dissertatioin. Faculty of Fisheries, Hokkaido University, Hokkaido, Japan.
  31. Bhaskar N, Benila T, Radha C, Lalitha RG. 2008. Optimization of enzymatic hydrolysis of visceral waste proteins of Catla (Catla catla) for preparing protein hydrolysate using a commercial protease. Bioresour Technol 99: 335-343. https://doi.org/10.1016/j.biortech.2006.12.015
  32. Bhaskar N, Mahendrakar NS. 2008. Protein hydrolysate from visceral waste proteins of Catla (Catla catla): optimization of hydrolysis conditions for a commercial neutral protease. Bioresour Technol 99: 4105-4111. https://doi.org/10.1016/j.biortech.2007.09.006
  33. Konosu S, Yamaguchi K, Fuke S, Shirai T. 1983. Amino acids and related compounds in the extracts of different parts of the muscle of chum salmon. Bull Jap Soc Sci Fish 49: 301-304. https://doi.org/10.2331/suisan.49.301
  34. Hata M, Sato Y, Yamaguchi T, Ito M, Kuno Y. 1988. The chemical and amino acid compositions in tissues of cultured and wild coho salmon Oncorhynchus kisutch. Bull Jap Soc Sci Fish 54: 1365-1370. https://doi.org/10.2331/suisan.54.1365
  35. Liaset B, Lied E, Espe M. 2000. Enzymatic hydrolysis of by-products from the fish-filleting industry; chemical characterisation and nutritional evaluation. J Sci Food Agric 80:581-589. https://doi.org/10.1002/(SICI)1097-0010(200004)80:5<581::AID-JSFA578>3.0.CO;2-I
  36. Adler-Nissen J. 1976. Enzymatic hydrolysis of proteins for increased solubility. J Agric Food Chem 24: 1090-1093. https://doi.org/10.1021/jf60208a021
  37. Park HJ, Do HJ, Kim OJ, Kim A, Ha JM. 2012. Hepatoprotective effects of various enzyme hydrolysates from oysters on tacrine-induced toxicity in human hepatoma cells. J Life Sci 22: 117-125. https://doi.org/10.5352/JLS.2012.22.1.117
  38. Kim BY. 2009. Food components of green algae and preparation of bse for the development of natural condiment. MS Thesis. Gyeongsang National University, Jinju, Korea.