References
- Andreola, M. L., Calmels, C., Michel, J., Toulme, J. J. and Litvak, S. (2000) Towards the selection of phosphorothioate aptamers:optimizing in vitro selection steps with phosphorothioate nucleotides. Eur. J. Biochem. 267, 5032-5040. https://doi.org/10.1046/j.1432-1327.2000.01557.x
- Aravind, A., Jeyamohan, P., Nair, R., Veeranarayanan, S., Nagaoka, Y., Yoshida, Y., Maekawa, T. and Kumar, D. S. (2012) AS1411 aptamer tagged PLGA-lecithin-PEG nanoparticles for tumor cell targeting and drug delivery. Biotechnol. Bioeng. 109, 2920-2931. https://doi.org/10.1002/bit.24558
- Bagalkot, V., Farokhzad, O. C., Langer, R. and Jon, S. (2006) An aptamer-doxorubicin physical conjugate as a novel targeted drugdelivery platform. Angew. Chem. Int. Ed. Engl. 45, 8149-8152. https://doi.org/10.1002/anie.200602251
- Banaszynski, M. and Kolesar, J. M. (2013) Vemurafenib and ipilimumab: New agents for metastatic melanoma. Am. J. Health Syst. Pharm. 70, 1205-1210. https://doi.org/10.2146/ajhp120260
- Barciszewski, J., Medgaard, M., Koch, T., Kurreck, J. and Ermann, V. A. (2009) Locked nucleic acid aptamers. Methods Mol. Biol. 535, 165-186. https://doi.org/10.1007/978-1-59745-557-2_10
- Berezovski, M., Drabovich, A., Krylova, S. M., Musheev, M., Okhonin, V., Petrov, A. and Krylov, S. N. (2005) Nonequilibrium capillary electrophoresis of equilibrium mixtures: a universal tool for development of aptamers. J. Am. Chem. Soc. 127, 3165-3171. https://doi.org/10.1021/ja042394q
- Berezovski, M., Musheev, M., Drabovich, A. and Krylov, S. N. (2006) Non-SELEX selection of aptamers. J. Am. Chem. Soc. 128, 1410-1411. https://doi.org/10.1021/ja056943j
- Blank, M., Weinschenk, T., Priemer, M. and Schluesener, H. (2001) Systematic evolution of a DNA aptamer binding to rat brain tumor microvessels. selective targeting of endothelial regulatory protein pigpen. J. Biol. Chem. 276, 16464-16468. https://doi.org/10.1074/jbc.M100347200
- Bruno, J. G., Carrillo, M. P., Phillips, T., Vail, N. K. and Hanson, D. (2008) Competitive FRET-aptamer-based detection of methylphosphonic acid, a common nerve agent metabolite. J. Fluoresc. 18, 867-876. https://doi.org/10.1007/s10895-008-0316-3
- Cai, W. and Chen, X. (2007) Nanoplatforms for targeted molecular imaging in living subjects. Small 3, 1840-1854. https://doi.org/10.1002/smll.200700351
- Chen, F., Hu, Y., Li, D., Chen, H. and Zhang, X. L. (2009) CS-SELEX generates high-affinity ssDNA aptamers as molecular probes for hepatitis C virus envelope glycoprotein E2. PLoS One 4, e8142 https://doi.org/10.1371/journal.pone.0008142
- Chu, T. C., Marks, J. W. 3rd, Lavery, L. A., Faulkner, S., Rosenblum, M. G., Ellington, A. D. and Levy, M. (2006a) Aptamer:toxin conjugates that specifically target prostate tumor cells. Cancer Res. 66, 5989-5992. https://doi.org/10.1158/0008-5472.CAN-05-4583
- Chu, T. C., Twu, K. Y., Ellington, A. D. and Levy, M. (2006b) Aptamer mediated siRNA delivery. Nucleic Acids Res. 34, e73 https://doi.org/10.1093/nar/gkl388
- Cox, J. C., Rudolph, P. and Ellington, A. D. (1998) Automated RNA selection. Biotechnol. Prog. 14, 845-850. https://doi.org/10.1021/bp980097h
- Cui, Z. Q., Ren, Q., Wei, H. P., Chen, Z., Deng, J. Y., Zhang, Z. P. and Zhang, X. E. (2011) Quantum dot-aptamer nanoprobes for recognizing and labeling infl uenza A virus particles. Nanoscale. 3, 2454-2457. https://doi.org/10.1039/c1nr10218d
- Diener, J. L., Daniel Lagasse, H. A., Duerschmied, D., Merhi, Y., Tanguay, J. F., Hutabarat, R., Gilbert, J., Wagner, D. D. and Schaub, R. (2009) Inhibition of von Willebrand factor-mediated platelet activation and thrombosis by the anti-von Willebrand factor A1-domain aptamer ARC1779. J. Thromb. Haemost. 7, 1155-1162. https://doi.org/10.1111/j.1538-7836.2009.03459.x
- Dollins, C. M., Nair, S., Boczkowski, D., Lee, J., Layzer, J. M., Gilboa, E. and Sullenger, B. A. (2008) Assembling OX40 aptamers on a molecular scaffold to create a receptor-activating aptamer. Chem. Biol. 15, 675-682. https://doi.org/10.1016/j.chembiol.2008.05.016
- Ellington, A. D. and Szostak, J. W. (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346, 818-822. https://doi.org/10.1038/346818a0
- Eyetech Study Group. (2002) Preclinical and phase 1A clinical evaluation of an anti-vegf pegylated aptamer (Eye001) for the treatment of exudative age-related macular degeneration. Retina. 22, 143-152. https://doi.org/10.1097/00006982-200204000-00002
- Floege, J., Ostendorf, T., Janssen, U., Burg, M., Radeke, H. H., Vargeese, C., Gill, S. C., Green, L. S. and Janjic, N. (1999) Novel approach to specific growth factor inhibition in vivo: antagonism of platelet-derived growth factor in glomerulonephritis by aptamers. Am. J. Pathol. 154, 169-179. https://doi.org/10.1016/S0002-9440(10)65263-7
- Foy, J. W., Rittenhouse, K., Modi, M. and Patel, M. (2007) Local tolerance and systemic safety of pegaptanib sodium in the dog and rabbit. J. Ocul. Pharmacol. Ther. 23, 452-466. https://doi.org/10.1089/jop.2006.0149
- Gilboa, E., McNamara, J. 2nd and Pastor, F. (2013) Use of oligonucleotide aptamer ligands to modulate the function of immune receptors. Clin. Cancer Res. 19, 1054-1062. https://doi.org/10.1158/1078-0432.CCR-12-2067
- Gissel, M., Orfeo, T., Foley, J. H. and Butenas, S. (2012) Effect of BAX499 aptamer on tissue factor pathway inhibitor function and thrombin generation in models of hemophilia. Thromb. Res. 130, 948-955. https://doi.org/10.1016/j.thromres.2012.08.299
- Gudima, S.O., Kostyuk, D. A., Grishchenko, O. I., Tunitskaya, V. L., Memelova, L. V. and Kochetkov, S. N. (1998) Synthesis of mixed ribo/deoxyribopolynucleotides by mutant T7 RNA polymerase. FEBS Lett. 439, 302-306. https://doi.org/10.1016/S0014-5793(98)01393-3
- Hamula, C. L., Le, X. C. and Li, X. F. (2011) DNA aptamers binding to multiple prevalent M-types of Streptococcus pyogenes. Anal. Chem. 83, 3640-3647. https://doi.org/10.1021/ac200575e
- Han, D., Zhu, G., Wu, C., Zhu, Z., Chen, T., Zhang, X. and Tan, W. (2013) Engineering a cell-surface aptamer circuit for targeted and amplified photodynamic cancer therapy. ACS Nano 7, 2312-2319. https://doi.org/10.1021/nn305484p
- Healy, J. M., Lewis, S. D., Kurz, M., Boomer, R. M., Thompson, K. M., Wilson, C. and McCauley, T. G. (2004) Pharmacokinetics and biodistribution of novel aptamer compositions. Pharm. Res. 21, 2234-2246. https://doi.org/10.1007/s11095-004-7676-4
- Hicke, B. J., Stephens, A. W., Gould, T., Chang, Y. F., Lynott, C. K., Heil, J., Borkowski, S., Hilger, C. S., Cook, G., Warren, S. and Schmidt, P. G. (2006) Tumor targeting by an aptamer. J. Nucl. Med. 47, 668-678.
- Holahan, M. R., Madularu, D., McConnell, E. M., Walsh, R. and DeRosa, M. C. (2011) Intra-accumbens injection of a dopamine aptamer abates MK-801-induced cognitive dysfunction in a model of schizophrenia. PLoS One 6, e22239. https://doi.org/10.1371/journal.pone.0022239
- Holland, C. A., Henry, A. T., Whinna, H. C. and Church, F. C. (2000) Effect of oligodeoxynucleotide thrombin aptamer on thrombin inhibition by heparin cofactor II and antithrombin. FEBS Lett. 484, 87-91. https://doi.org/10.1016/S0014-5793(00)02131-1
- Hong, H., Goel, S., Zhang, Y. and Cai, W. (2011) Molecular imaging with nucleic acid aptamers. Curr. Med. Chem. 18, 4195-4205. https://doi.org/10.2174/092986711797189691
- Hooks, M. A., Wade, C. S. and Millikan, W. J. (1991) Muromonab CD-3: a review of its pharmacology, pharmacokinetics, and clinical use in transplantation. Pharmacotherapy 11, 26-37.
- Horhota, A., Zou, K., Ichida, J. K., Yu, B., McLaughlin, L. W., Szostak, J. W. and Chaput, J. C. (2005) Kinetic analysis of an efficient DNAdependent TNA polymerase. J. Am. Chem. Soc. 127, 7427-7434. https://doi.org/10.1021/ja0428255
- Huang, Y. F., Shangguan, D., Liu, H., Phillips, J. A., Zhang, X., Chen, Y. and Tan, W. (2009) Molecular assembly of an aptamer-drug conjugate for targeted drug delivery to tumor cells. Chembiochem. 10, 862-868. https://doi.org/10.1002/cbic.200800805
-
Hussain, A. F., Tur, M. K. and Barth, S. (2013) An aptamer-siRNA chimera silences the eukaryotic elongation factor 2 gene and induces apoptosis in cancers expressing
${\alpha}$ v${\beta}$ 3 integrin. Nucleic Acid Ther. 23, 203-212. https://doi.org/10.1089/nat.2012.0408 - Hwang do, W., Ko, H. Y., Lee, J. H., Kang, H., Ryu, S. H., Song, I. C., Lee, D. S. and Kim, S. (2010) A nucleolin-targeted multimodal nanoparticle imaging probe for tracking cancer cells using an aptamer. J. Nucl. Med. 51, 98-105. https://doi.org/10.2967/jnumed.109.069880
- Hybarger, G., Bynum, J., Williams, R. F., Valdes, J. J. and Chambers, J. P. (2006) A microfl uidic SELEX prototype. Anal. Bioanal. Chem. 384, 191-198. https://doi.org/10.1007/s00216-005-0089-3
- Ichida, J. K., Zou, K., Horhota, A., Yu, B., McLaughlin, L. W. and Szostak, J. W. (2005) An in vitro selection system for TNA. J. Am. Chem. Soc. 127, 2802-2803. https://doi.org/10.1021/ja045364w
- Jayasena, S. D. (1999) Aptamers: an emerging class of molecules that rival antibodies in diagnostics. Clin. Chem. 45, 1628-1650.
- Jenison, R. D., Gill, S. C., Pardi, A. and Polisky, B. (1994) High-resolution molecular discrimination by RNA. Science 263, 1425-1429. https://doi.org/10.1126/science.7510417
- Kasahara, Y. and Kuwahara, M. (2012) Artifi cial specific binders directly recovered from chemically modified nucleic Acid libraries. J. Nucleic Acids 2012, 156482.
- Kasahara, Y., Irisawa, Y., Ozaki, H., Obika, S. and Kuwahara, M. (2013) 2',4'-BNA/LNA aptamers: CE-SELEX using a DNA-based library of full-length 2'-O, 4'-C-methylene-bridged/linked bicyclic ribonucleotides. Bioorg. Med. Chem. Lett. 23, 1288-1292. https://doi.org/10.1016/j.bmcl.2012.12.093
-
Kawakami, J., Imanaka, H., Yokota, Y. and Sugimoto, N. (2000) in vitro selection of aptamers that act with
$Zn^{2+}$ . J. Inorg. Biochem. 82, 197-206. https://doi.org/10.1016/S0162-0134(00)00158-6 - Kempeneers, V., Renders, M., Froeyen, M. and Herdewijn, P. (2005) Investigation of the DNA-dependent cyclohexenyl nucleic acid polymerization and the cyclohexenyl nucleic acid-dependent DNA polymerization. Nucleic Acids Res. 33, 3828-3836. https://doi.org/10.1093/nar/gki695
- Kim, D., Jeong, Y. Y. and Jon, S. (2010) A drug-loaded aptamer-gold nanoparticle bioconjugate for combined CT imaging and therapy of prostate cancer. ACS Nano 4, 3689-3696. https://doi.org/10.1021/nn901877h
- Kim, S., Kim, Y., Kim, P., Ha, J., Kim, K., Sohn, M., Yoo, J. S., Lee, J., Kwon, J. A. and Lee, K. N. (2006) Improved sensitivity and physical properties of sol-gel protein chips using large-scale material screening and selection. Anal. Chem. 78, 7392-7396. https://doi.org/10.1021/ac0520487
- Klussmann, S., Nolte, A., Bald, R., Erdmann, V. A. and Furste, J. P. (1996) Mirror-image RNA that binds D-adenosine. Nat. Biotechnol. 14, 1112-1115. https://doi.org/10.1038/nbt0996-1112
- Knight, D. M., Trinh, H., Le, J., Siegel, S., Shealy, D., McDonough, M., Scallon, B., Moore, M. A., Vilcek, J. and Daddona, P. (1993) Construction and initial characterization of a mouse-human chimeric anti-TNF antibody. Mol. Immunol. 30, 1443-1453. https://doi.org/10.1016/0161-5890(93)90106-L
- Kolesnikova, O., Kazakova, H., Comte, C., Steinberg, S., Kamenski, P., Martin, R. P., Tarassov, I. and Entelis, N. (2010) Selection of RNA aptamers imported into yeast and human mitochondria. RNA 16, 926-941. https://doi.org/10.1261/rna.1914110
- Kuwahara, M., Obika, S., Nagashima, J., Ohta, Y., Suto, Y., Ozaki, H., Sawai, H. and Imanishi, T. (2008) Systematic analysis of enzymatic DNA polymerization using oligo-DNA templates and triphosphate analogs involving 2',4'-bridged nucleosides. Nucleic Acids Res. 36, 4257-4265. https://doi.org/10.1093/nar/gkn404
- Kuwahara, M., Takahata, Y., Shoji, A., Ozaki, A. N., Ozaki, H. and Sawai, H. (2003) Substrate properties of C5-substituted pyrimidine 2'-deoxynucleoside 5'-triphosphates for thermostable DNA polymerases during PCR. Bioorg. Med. Chem. Lett. 13, 3735-3738. https://doi.org/10.1016/j.bmcl.2003.08.001
- Kuwahara, M., Takano, Y., Kasahara, Y., Nara, H., Ozaki, H., Sawai, H., Sugiyama, A. and Obika, S. (2010) Study on suitability of KOD dna polymerase for enzymatic production of artifi cial nucleic acids using base/sugar modified nucleoside triphosphates. Molecules 15, 8229-8240. https://doi.org/10.3390/molecules15118229
- Kuwahara, M., Takeshima, H., Nagashima, J., Minezaki, S., Ozaki, H. and Sawai, H. (2009) Transcription and reverse transcription of artifi cial nucleic acids involving backbone modifi cation by template directed DNA polymerase reactions. Bioorg. Med. Chem. 17, 3782-3788. https://doi.org/10.1016/j.bmc.2009.04.045
- Latham, J. A., Johnson, R. and Toole, J. J. (1994) The application of a modified nucleotide in aptamer selection: novel thrombin aptamers containing 5-(1-pentynyl)-2'-deoxyuridine. Nucleic Acids Res. 22, 2817-2822. https://doi.org/10.1093/nar/22.14.2817
- Lato, S. M., Ozerova, N. D., He, K. , Sergueeva, Z., Shaw, B. R. and Burke, D. H. (2002) Boron-containing aptamers to ATP. Nucleic Acids Res. 30, 1401-1407. https://doi.org/10.1093/nar/30.6.1401
- Lauhon, C. T. and Szostak, J. W. (1995) RNA aptamers that bind flavin and nicotinamide redox cofactors. J. Am. Chem. Soc. 117, 1246-1257. https://doi.org/10.1021/ja00109a008
- Leal, N. A., Sukeda, M. and Benner, S. A. (2006) Dynamic assembly of primers on nucleic acid templates. Nucleic Acids Res. 34, 4702-4710. https://doi.org/10.1093/nar/gkl625
- Leva, S., Lichte, A., Burmeister, J., Muhn, P., Jahnke, B., Fesser, D., Erfurth, J., Burgstaller, P. and Klussmann, S. (2002) GnRH binding RNA and DNA Spiegelmers: a novel approach toward GnRH antagonism. Chem. Biol. 9, 351-359. https://doi.org/10.1016/S1074-5521(02)00111-4
- Li, F., Du, Z., Yang, L. and Tang, B. (2013) Selective and sensitive turnon detection of adenosine triphosphate and thrombin based on bifunctional fl uorescent oligonucleotide probe. Biosens. Bioelectron. 41, 907-910. https://doi.org/10.1016/j.bios.2012.10.007
- Li, M., Lin, N., Huang, Z., Du, L., Altier, C., Fang, H. and Wang, B. (2008) Selecting aptamers for a glycoprotein through the incorporation of the boronic acid moiety. J. Am. Chem. Soc. 130, 12636-12638. https://doi.org/10.1021/ja801510d
- Liu, Z., Duan, J. H., Song, Y. M., Ma, J., Wang, F. D., Lu, X., Yang and X. D. (2012) Novel HER2 aptamer selectively delivers cytotoxic drug to HER2-positive breast cancer cells in vitro. J. Transl. Med. 10, 148. https://doi.org/10.1186/1479-5876-10-148
- Lou, X., Qian, J., Xiao, Y., Viel, L., Gerdon, A. E., Lagally, E. T., Atzberger, P., Tarasow, T. M., Heeger, A. J. and Soh, H. T. (2009) Micromagnetic selection of aptamers in microfl uidic channels. Proc. Natl. Acad. Sci. U.S.A 106, 2989-2994. https://doi.org/10.1073/pnas.0813135106
- Mann, A. P., Bhavane, R. C., Somasunderam, A., Liz Montalvo-Ortiz, B., Ghaghada, K. B., Volk, D., Nieves-Alicea, R., Suh, K. S., Ferrari, M., Annapragada, A., Gorenstein, D. G. and Tanaka, T. (2011) Thioaptamer conjugated liposomes for tumor vasculature targeting. Oncotarget 2, 298-304.
- Mann, D., Reinemann, C., Stoltenburg, R. and Strehlitz, B. (2005) in vitro selection of DNA aptamers binding ethanolamine. Biochem. Biophys. Res. Commun. 338, 1928-1934. https://doi.org/10.1016/j.bbrc.2005.10.172
- Maul, T. M., Dudgeon, D. D., Beste, M. T., Hammer, D. A., Lazo, J. S., Villanueva, F. S. and Wagner, W. R. (2010) Optimization of ultrasound contrast agents with computational models to improve selection of ligands and binding strength. Biotechnol. Bioeng. 107, 854-864. https://doi.org/10.1002/bit.22857
- Mazumdar, S. and Greenwald, D. (2009) Golimumab. MAbs 1, 422-431. https://doi.org/10.4161/mabs.1.5.9286
- McIntyre, J. O. and Matrisian, L. M. (2003) Molecular imaging of proteolytic activity in cancer. J. Cell. Biochem. 90, 1087-1097. https://doi.org/10.1002/jcb.10713
- McNamara, J. O. 2nd, Andrechek, E. R., Wang, Y., Viles, K. D., Rempel, R. E., Gilboa, E., Sullenger, B. A. and Giangrande, P. H. (2006) Cell type-specific delivery of siRNAs with aptamer-siRNA chimeras. Nat. Biotechnol. 24, 1005-1015. https://doi.org/10.1038/nbt1223
- McNamara, J. O., Kolonias, D., Pastor, F., Mittler, R. S., Chen, L., Giangrande, P. H., Sullenger, B. and Gilboa, E. (2008) Multivalent 4-1BB binding aptamers costimulate CD8+ T cells and inhibit tumor growth in mice. J. Clin. Invest. 118, 376-386. https://doi.org/10.1172/JCI33365
- Meng, L., Yang, L., Zhao, X., Zhang, L., Zhu, H., Liu, C. and Tan, W. (2012) Targeted delivery of chemotherapy agents using a liver cancer-specific aptamer. PLoS One 7, e33434. https://doi.org/10.1371/journal.pone.0033434
- Mi, J., Liu, Y., Rabbani, Z. N., Yang, Z., Urban, J. H., Sullenger, B. A. and Clary, B. M. (2010) in vivo selection of tumor-targeting RNA motifs. Nat. Chem. Biol. 6, 22-24. https://doi.org/10.1038/nchembio.277
- Mosing, R. K., Mendonsa, S. D. and Bowser, M. T. (2005) Capillary electrophoresis-SELEX selection of aptamers with affinity for HIV-1 reverse transcriptase. Anal. Chem. 77, 6107-6112. https://doi.org/10.1021/ac050836q
- Neff, C. P., Zhou, J., Remling, L., Kuruvilla, J., Zhang, J., Li, H., Smith, D. D., Swiderski, P., Rossi, J. J. and Akkina, R. (2011) An aptamersiRNA chimera suppresses HIV-1 viral loads and protects from helper CD4(+) T cell decline in humanized mice. Sci. Transl. Med. 3, 66ra6.
- Nitsche, A., Kurth, A., Dunkhorst, A., Panke, O., Sielaff, H., Junge, W., Muth, D., Scheller, F., Stocklein, W., Dahmen, C., Pauli, G. and Kage, A. (2007) One-step selection of Vaccinia virus-binding DNA aptamers by MonoLEX. BMC Biotechnol. 7, 48. https://doi.org/10.1186/1472-6750-7-48
- Nolte, A., Klussmann, S., Bald, R., Erdmann, V. A. and Furste, J. P. (1996) Mirror-design of L-oligonucleotide ligands binding to L-arginine. Nat. Biotechnol. 14, 1116-1119. https://doi.org/10.1038/nbt0996-1116
- Pageau, S. C. (2009) Denosumab. MAbs 1, 210-5. https://doi.org/10.4161/mabs.1.3.8592
- Park, S. M., Ahn, J. Y., Jo, M., Lee, D. K., Lis, J. T., Craighead, H. G. and Kim, S. (2009) Selection and elution of aptamers using nanoporous sol-gel arrays with integrated microheaters. Lab Chip 9, 1206-1212. https://doi.org/10.1039/b814993c
- Pastor, F., Soldevilla, M. M., Villanueva, H., Kolonias, D., Inoges, S., de Cerio, A. L., Kandzia, R., Klimyuk, V., Gleba, Y., Gilboa, E. and Bendandi, M. (2013) CD28 aptamers as powerful immune response modulators. Mol. Ther. Nucleic Acids 2, e98. https://doi.org/10.1038/mtna.2013.26
- Rockey, W. M., Huang, L., Kloepping, K. C., Baumhover, N. J., Giangrande, P. H. and Schultz, M. K. (2011) Synthesis and radiolabeling of chelator-RNA aptamer bioconjugates with copper-64 for targeted molecular imaging. Bioorg. Med. Chem. 19, 4080-4090. https://doi.org/10.1016/j.bmc.2011.05.010
- Romer, P. S., Berr, S., Avota, E., Na, S. Y., Battaglia, M., ten Berge, I., Einsele, H. and Hunig, T. (2011) Preculture of PBMCs at high cell density increases sensitivity of T-cell responses, revealing cytokine release by CD28 superagonist TGN1412. Blood 118, 6772-6782. https://doi.org/10.1182/blood-2010-12-319780
- Ruckman, J., Green, L. S., Beeson, J., Waugh, S., Gillette, W. L., Henninger, D. D., Claesson-Welsh, L. and Janjic, N. (1998) 2'-Fluoropyrimidine RNA-based aptamers to the 165-amino acid form of vascular endothelial growth factor (VEGF165). Inhibition of receptor binding and VEGF-induced vascular permeability through interactions requiring the exon 7-encoded domain. J. Biol. Chem. 273, 20556-20567. https://doi.org/10.1074/jbc.273.32.20556
- Savla, R., Taratula, O., Garbuzenko, O. and Minko, T. (2011) Tumor targeted quantum dot-mucin 1 aptamer-doxorubicin conjugate for imaging and treatment of cancer. J. Control. Release 153, 16-22. https://doi.org/10.1016/j.jconrel.2011.02.015
- Schmidt, K. S., Borkowski, S., Kurreck, J., Stephens, A. W., Bald, R., Hecht, M., Friebe, M., Dinkelborg, L. and Erdmann, V. A. (2004) Application of locked nucleic acids to improve aptamer in vivo stability and targeting function. Nucleic Acids Res. 32, 5757-5765. https://doi.org/10.1093/nar/gkh862
- Schneider, D. J., Feigon, J., Hostomsky, Z. and Gold, L. (1995) Highaffi nity ssDNA inhibitors of the reverse transcriptase of type 1 human immunodefi ciency virus. Biochemistry 34, 9599-9610. https://doi.org/10.1021/bi00029a037
- Shi, H., Tang, Z., Kim, Y., Nie, H., Huang, Y. F., He, X., Deng, K., Wang, K. and Tan, W. (2010) in vivo fl uorescence imaging of tumors using molecular aptamers generated by cell-SELEX. Chem. Asian J. 5, 2209-2213. https://doi.org/10.1002/asia.201000242
- Shoji, A., Kuwahara, M., Ozaki, H. and Sawai, H. (2007) Modified DNA aptamer that binds the (R)-isomer of a thalidomide derivative with high enantioselectivity. J. Am. Chem. Soc. 129, 1456-1464. https://doi.org/10.1021/ja067098n
- Siller-Matula, J. M., Merhi, Y., Tanguay, J. F., Duerschmied, D., Wagner, D. D., McGinness, K. E., Pendergrast, P. S., Chung, J. K., Tian, X., Schaub, R. G. and Jilma, B. (2012) ARC15105 is a potent antagonist of von Willebrand factor mediated platelet activation and adhesion. Arterioscler. Thromb. Vasc. Biol. 32, 902-909. https://doi.org/10.1161/ATVBAHA.111.237529
- Song, Y., Zhu, Z., An, Y., Zhang, W., Zhang, H., Liu, D., Yu, C., Duan, W. and Yang, C. J. (2013) Selection of DNA aptamers against epithelial cell adhesion molecule for cancer cell imaging and circulating tumor cell capture. Anal. Chem. 85, 4141-4149. https://doi.org/10.1021/ac400366b
- Subramanian, N., Raghunathan, V., Kanwar, J. R., Kanwar, R. K., Elchuri, S. V., Khetan, V. and Krishnakumar, S. (2012) Target-specific delivery of doxorubicin to retinoblastoma using epithelial cell adhesion molecule aptamer. Mol. Vis. 18, 2783-2795.
- Suntharalingam, G., Perry, M. R., Ward, S., Brett, S. J., Castello-Cortes, A., Brunner, M. D. and Panoskaltsis, N. (2006) Cytokine storm in a phase 1 trial of the anti-CD28 monoclonal antibody TGN1412. N. Engl. J. Med. 355, 1018-1028. https://doi.org/10.1056/NEJMoa063842
- Talbot, L. J., Mi, Z., Bhattacharya, S. D., Kim, V., Guo, H. and Kuo, P. C. (2011) Pharmacokinetic characterization of an RNA aptamer against osteopontin and demonstration of in vivo effi cacy in reversing growth of human breast cancer cells. Surgery 150, 224-230. https://doi.org/10.1016/j.surg.2011.05.015
- Tang, Z., Parekh, P., Turner, P., Moyer, R. W. and Tan, W. (2009) Generating aptamers for recognition of virus-infected cells. Clin. Chem. 55, 813-822. https://doi.org/10.1373/clinchem.2008.113514
- Tsai, C. H., Chen, J. and Szostak, J. W. (2007) Enzymatic synthesis of DNA on glycerol nucleic acid templates without stable duplex formation between product and template. Proc. Natl. Acad. Sci. USA 104, 14598-14603. https://doi.org/10.1073/pnas.0704211104
- Tsien, R. Y. (2005) Building and breeding molecules to spy on cells and tumors. FEBS Lett. 579, 927-932. https://doi.org/10.1016/j.febslet.2004.11.025
- Tuerk, C. and Gold, L. (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249, 505-510. https://doi.org/10.1126/science.2200121
- Vater, A., Sell, S., Kaczmarek, P., Maasch, C., Buchner, K., Pruszynska-Oszmalek, E., Kolodziejski, P., Purschke, W. G., Nowak, K. W., Strowski, M. Z. and Klussmann, S. (2013) A mixed mirror-image DNA/RNA aptamer inhibits glucagon and acutely improves glucose tolerance in models of type 1 and type 2 diabetes. J. Biol. Chem. 288, 21136-21147. https://doi.org/10.1074/jbc.M112.444414
- Vaught, J. D., Bock, C., Carter, J., Fitzwater, T., Otis, M., Schneider, D., Rolando, J., Waugh, S., Wilcox, S. K. and Eaton, B. E. (2010) Expanding the chemistry of DNA for in vitro selection. J. Am. Chem. Soc. 132, 4141-4151. https://doi.org/10.1021/ja908035g
- Veedu, R. N., Vester, B. and Wengel, J. (2009) Effi cient enzymatic synthesis of LNA-modified DNA duplexes using KOD DNA polymerase. Org. Biomol. Chem. 7, 1404-1409. https://doi.org/10.1039/b819946a
- Wang, C. H., Huang, Y. F. and Yeh, C. K. (2011) Aptamer-conjugated nanobubbles for targeted ultrasound molecular imaging. Langmuir 27, 6971-6976. https://doi.org/10.1021/la2011259
- Wang, J., Jiang, H. and Liu, F. (2000) in vitro selection of novel RNA ligands that bind human cytomegalovirus and block viral infection. RNA 6, 571-583. https://doi.org/10.1017/S1355838200992215
- White, R., Rusconi, C., Scardino, E., Wolberg, A., Lawson, J., Hoffman, M. and Sullenger, B. (2001) Generation of species crossreactive aptamers using "toggle" SELEX. Mol. Ther. 4, 567-573. https://doi.org/10.1006/mthe.2001.0495
- Williams, K. P., Liu, X. H., Schumacher, T. N., Lin, H. Y., Ausiello, D. A., Kim, P. S. and Bartel, D. P. (1997) Bioactive and nuclease-resistant L-DNA ligand of vasopressin. Proc. Natl. Acad. Sci. U.S.A. 94, 11285-11290. https://doi.org/10.1073/pnas.94.21.11285
- Wittung, P., Nielsen, P. E., Buchardt, O., Egholm, M. and Norden, B. (1994) DNA-like double helix formed by peptide nucleic acid. Nature 368, 561-563. https://doi.org/10.1038/368561a0
- Wullner, U., Neef, I., Eller, A., Kleines, M., Tur, M. K. and Barth, S. (2008) Cell-specific induction of apoptosis by rationally designed bivalent aptamer-siRNA transcripts silencing eukaryotic elongation factor 2. Curr. Cancer Drug Targets 8, 554-565. https://doi.org/10.2174/156800908786241078
- Xu, W. and Lu, Y. (2011) A smart magnetic resonance imaging contrast agent responsive to adenosine based on a DNA aptamer-conjugated gadolinium complex. Chem. Commun. 47, 4998-5000. https://doi.org/10.1039/c1cc10161g
-
Yang, X., Fennewald, S., Luxon, B. A., Aronson, J., Herzog, N. K. and Gorenstein, D. G. (1999) Aptamers containing thymidine 3'-Ophosphorodithioates: synthesis and binding to nuclear factor-
${\kappa}$ B. Bioorg. Med. Chem. Lett. 9, 3357-3362. https://doi.org/10.1016/S0960-894X(99)00600-9 - Yang, X., Huang, J., Wang, K., Li, W., Cui, L. and Li, X. (2011) Angiogenin-mediated photosensitizer-aptamer conjugate for photodynamic therapy. ChemMedChem 6, 1788-1780.
- Yigit, M. V., Mazumdar, D., Kim, H. K., Lee, J. H., Odintsov, B. and Lu, Y. (2007) Smart "turn-on" magnetic resonance contrast agents based on aptamer-functionalized superparamagnetic iron oxide nanoparticles. Chembiochem 8, 1675-1678. https://doi.org/10.1002/cbic.200700323
-
Zhang, C., Ji, X., Zhang, Y., Zhou, G., Ke, X., Wang, H., Tinnefeld, P. and He, Z. (2013) One-pot synthesized aptamer-functionalized CdTe:
$Zn^{2+}$ quantum dots for tumor-targeted fl uorescence imaging in vitro and in vivo. Anal. Chem. 85, 5843-5849. https://doi.org/10.1021/ac400606e - Zhang, M. Z., Yu, R. N., Chen, J., Ma, Z. Y. and Zhao, Y. D. (2012) Targeted quantum dots fluorescence probes functionalized with aptamer and peptide for transferrin receptor on tumor cells. Nanotechnology 23, 485104. https://doi.org/10.1088/0957-4484/23/48/485104
- Zhang, Y., Hong, H. and Cai W. (2011) Tumor-targeted drug delivery with aptamers. Curr. Med. Chem. 18, 4185-4194. https://doi.org/10.2174/092986711797189547
- Zhou, B. and Wang, B. (2006) Pegaptanib for the treatment of agerelated macular degeneration. Exp. Eye Res. 83, 615-619. https://doi.org/10.1016/j.exer.2006.02.010
- Zhou, J., Li, H., Li, S., Zaia, J. and Rossi, J. J. (2008) Novel dual inhibitory function aptamer-siRNA delivery system for HIV-1 therapy. Mol. Ther. 16, 1481-1489. https://doi.org/10.1038/mt.2008.92
- Zhou, J., Li, H., Zhang, J., Piotr, S. and Rossi J. (2011a) Development of cell-type specific anti-HIV gp120 aptamers for siRNA delivery. J. Vis. Exp. 23, 2954.
- Zhou, J., Neff, C. P., Swiderski, P., Li, H., Smith, D. D., Aboellail, T., Remling-Mulder, L., Akkina, R. and Rossi, J. J. (2013) Functional in vivo delivery of multiplexed anti-HIV-1 siRNAs via a chemically synthesized aptamer with a sticky bridge. Mol. Ther. 21, 192-200. https://doi.org/10.1038/mt.2012.226
- Zhou, J., Shu, Y., Guo, P., Smith, D. D. and Rossi, J. J. (2011b) Dual functional RNA nanoparticles containing phi29 motor pRNA and anti-gp120 aptamer for cell-type specific delivery and HIV-1 inhibition. Methods 54, 284-294. https://doi.org/10.1016/j.ymeth.2010.12.039
- Zhu, G., Ye, M., Donovan, M. J., Song, E., Zhao, Z. and Tan, W. (2012A) Nucleic acid aptamers: an emerging frontier in cancer therapy. Chem. Commun. (Camb) 48, 10472-10480. https://doi.org/10.1039/c2cc35042d
- Zhu, Q., Shibata, T., Kabashima, T. and Kai, M. (2012B) Inhibition of HIV-1 protease expression in T cells owing to DNA aptamer-mediated specific delivery of siRNA. Eur. J. Med. Chem. 56, 396-399. https://doi.org/10.1016/j.ejmech.2012.07.045
Cited by
- Aptamer Technology: Adjunct Therapy for Malaria vol.5, pp.1, 2017, https://doi.org/10.3390/biomedicines5010001
- Sequence-defined shuttles for targeted nucleic acid and protein delivery vol.5, pp.9, 2014, https://doi.org/10.4155/tde.14.54
- A saxitoxin-binding aptamer with higher affinity and inhibitory activity optimized by rational site-directed mutagenesis and truncation vol.101, 2015, https://doi.org/10.1016/j.toxicon.2015.04.017
- A novel 4-arm DNA/RNA Nanoconstruct triggering Rapid Apoptosis of Triple Negative Breast Cancer Cells within 24 hours vol.7, pp.1, 2017, https://doi.org/10.1038/s41598-017-00912-3
- Efficient functional neutralization of lethal peptide toxins in vivo by oligonucleotides vol.7, pp.1, 2017, https://doi.org/10.1038/s41598-017-07554-5
- Proximity assays for sensitive quantification of proteins vol.4, 2015, https://doi.org/10.1016/j.bdq.2015.04.002
- Predicting the Uncertain Future of Aptamer-Based Diagnostics and Therapeutics vol.20, pp.4, 2015, https://doi.org/10.3390/molecules20046866
- Surface biofunctionalization of β-TCP blocks using aptamer 74 for bone tissue engineering vol.67, 2016, https://doi.org/10.1016/j.msec.2016.05.002
- Progress and Challenges in Developing Aptamer-Functionalized Targeted Drug Delivery Systems vol.16, pp.10, 2015, https://doi.org/10.3390/ijms161023784
- Development of an Efficient G-Quadruplex-Stabilised Thrombin-Binding Aptamer Containing a Three-Carbon Spacer Molecule vol.18, pp.8, 2017, https://doi.org/10.1002/cbic.201600654
- Aptamer-siRNA Chimeras: Discovery, Progress, and Future Prospects vol.5, pp.3, 2017, https://doi.org/10.3390/biomedicines5030045
- Ras ssDNA aptamer inhibits vascular smooth muscle cell proliferation and migration through MAPK and PI3K pathways 2015, https://doi.org/10.3892/ijmm.2015.2139
- Post-SELEX optimization of aptamers vol.408, pp.17, 2016, https://doi.org/10.1007/s00216-016-9556-2
- Development of Phosphorothioate DNA and DNA Thioaptamers vol.5, pp.3, 2017, https://doi.org/10.3390/biomedicines5030041
- From selection hits to clinical leads: progress in aptamer discovery vol.3, 2016, https://doi.org/10.1038/mtm.2016.14
- ASSESSMENT OF NEUTRALIZING PROPERTIES OF DNA-APTAMERS AND EXTRACTS OF MEDICINAL HERBS AGAINST THE TICK-BORNE ENCEPHALITIS VIRUS vol.2, pp.1, 2017, https://doi.org/10.12737/article_5955e6b5aad2e3.30269730
- Quantitative PCR Analysis of DNA Aptamer Pharmacokinetics in Mice vol.25, pp.1, 2015, https://doi.org/10.1089/nat.2014.0515
- Indirect purification method provides high yield and quality ssDNA sublibrary for potential aptamer selection vol.476, 2015, https://doi.org/10.1016/j.ab.2015.02.027
- An aptamer targeting shared tumor-specific peptide antigen of MAGE-A3 in multiple cancers vol.138, pp.4, 2016, https://doi.org/10.1002/ijc.29826
- Architecture of high-affinity unnatural-base DNA aptamers toward pharmaceutical applications vol.5, pp.1, 2016, https://doi.org/10.1038/srep18478
- Aptamer Oligonucleotides: Novel Potential Therapeutic Agents in Autoimmune Disease vol.25, pp.4, 2015, https://doi.org/10.1089/nat.2014.0529
- Multiple modes of capillary electrophoresis applied in peptide nucleic acid related study vol.1501, 2017, https://doi.org/10.1016/j.chroma.2017.04.038
- A generic amplification strategy for electrochemical aptasensors using a non-enzymatic nanoceria tag vol.7, pp.31, 2015, https://doi.org/10.1039/C5NR02628H
- Use of anchor protein modules in fluorescence polarisation aptamer assay for ochratoxin A determination vol.962, 2017, https://doi.org/10.1016/j.aca.2017.01.024
- Enrichment of endogenous fractalkine and anti-inflammatory cells via aptamer-functionalized hydrogels vol.142, 2017, https://doi.org/10.1016/j.biomaterials.2017.07.013
- Aptamer strategy for ATP detection on nanocrystalline diamond functionalized by a nitrogen and hydrogen radical beam system vol.121, pp.4, 2017, https://doi.org/10.1063/1.4974984
- Thioaptamer-conjugated CD44-targeted delivery system for the treatment of breast cancer in vitro and in vivo vol.24, pp.4, 2016, https://doi.org/10.3109/1061186X.2015.1077850
- Modified Nucleoside Triphosphates for In-vitro Selection Techniques vol.4, 2016, https://doi.org/10.3389/fchem.2016.00018
- Modern affinity reagents: Recombinant antibodies and aptamers vol.33, pp.8, 2015, https://doi.org/10.1016/j.biotechadv.2015.10.004
- Antibody- and aptamer-strategies for GvHD prevention vol.19, pp.1, 2015, https://doi.org/10.1111/jcmm.12416
- Hi-Fi SELEX: A high-fidelity digital-PCR based therapeutic aptamer discovery platform vol.112, pp.8, 2015, https://doi.org/10.1002/bit.25581
- Aptasensor for environmental monitoring vol.9, pp.2, 2017, https://doi.org/10.1007/s13530-017-0308-2
- Fluorescence anisotropy-based structure-switching aptamer assay using a peptide nucleic acid (PNA) probe vol.97, 2016, https://doi.org/10.1016/j.ymeth.2015.09.018
- Therapeutic aptamers: developmental potential as anticancer drugs vol.48, pp.4, 2015, https://doi.org/10.5483/BMBRep.2015.48.4.277
- Enzyme-linked antibody aptamer assays based colorimetric detection of soluble fraction of activated leukocyte cell adhesion molecule vol.242, 2017, https://doi.org/10.1016/j.snb.2016.11.070
- Analysis of ATP and AMP binding to a DNA aptamer and its imidazole-tethered derivatives by surface plasmon resonance vol.140, pp.17, 2015, https://doi.org/10.1039/C5AN01347J
- Molecular Recognition of Human Liver Cancer Cells Using DNA Aptamers Generated via Cell-SELEX vol.10, pp.5, 2015, https://doi.org/10.1371/journal.pone.0125863
- An improved design of the kissing complex-based aptasensor for the detection of adenosine vol.407, pp.21, 2015, https://doi.org/10.1007/s00216-015-8818-8
- Site-specific replacement of the thymine methyl group by fluorine in thrombin binding aptamer significantly improves structural stability and anticoagulant activity vol.43, pp.22, 2015, https://doi.org/10.1093/nar/gkv1224
- Applications of High-Throughput Sequencing for In Vitro Selection and Characterization of Aptamers vol.9, pp.4, 2016, https://doi.org/10.3390/ph9040076
- Electrochemical Aptatoxisensor Responses on Nanocomposites Containing Electro-Deposited Silver Nanoparticles on Poly(Propyleneimine) Dendrimer for the Detection of Microcystin-LR in Freshwater vol.16, pp.11, 2016, https://doi.org/10.3390/s16111901
- Neutralization of Staphylococcal Enterotoxin B by an Aptamer Antagonist vol.59, pp.4, 2015, https://doi.org/10.1128/AAC.04414-14
- Human antibody-based chemically induced dimerizers for cell therapeutic applications vol.14, pp.2, 2017, https://doi.org/10.1038/nchembio.2529
- in platelet concentrates vol.65, pp.6, 2018, https://doi.org/10.2144/btn-2018-0081
- Advances on Aptamers against Protozoan Parasites vol.9, pp.12, 2018, https://doi.org/10.3390/genes9120584
- SERS based aptasensor for ochratoxin A by combining Fe3O4@Au magnetic nanoparticles and Au-DTNB@Ag nanoprobes with multiple signal enhancement vol.185, pp.10, 2018, https://doi.org/10.1007/s00604-018-3020-2
- Molecular Application of Aptamers in the Diagnosis and Treatment of Cancer and Communicable Diseases vol.11, pp.4, 2018, https://doi.org/10.3390/ph11040093
- Peptide nucleic acid and amino acid modified peptide nucleic acid analysis by capillary zone electrophoresis pp.01730835, 2019, https://doi.org/10.1002/elps.201800312
- Emerging Frontiers of Graphene in Biomedicine vol.25, pp.2, 2013, https://doi.org/10.4014/jmb.1412.12045
- Aptamers as the Agent in Decontamination Assays (Apta-Decontamination Assays): From the Environment to the Potential Application In Vivo vol.2017, pp.None, 2017, https://doi.org/10.1155/2017/3712070
- In vitro selections of mammaglobin A and mammaglobin B aptamers for the recognition of circulating breast tumor cells vol.7, pp.None, 2013, https://doi.org/10.1038/s41598-017-13751-z
- Panoply of Fluorescence Polarization/Anisotropy Signaling Mechanisms for Functional Nucleic Acid-Based Sensing Platforms vol.90, pp.7, 2013, https://doi.org/10.1021/acs.analchem.7b04593
- Measurement of (Aptamer-Small Target) KD Using the Competition between Fluorescently Labeled and Unlabeled Targets and the Detection of Fluorescence Anisotropy vol.90, pp.15, 2013, https://doi.org/10.1021/acs.analchem.8b01699
- Cascaded Aptamers-Governed Multistage Drug-Delivery System Based on Biodegradable Envelope-Type Nanovehicle for Targeted Therapy of HER2-Overexpressing Breast Cancer vol.10, pp.40, 2013, https://doi.org/10.1021/acsami.8b14009
- Improved Detection of HER2 by a Quasi-Targeted Proteomics Approach Using Aptamer–Peptide Probe and Liquid Chromatography–Tandem Mass Spectrometry vol.64, pp.3, 2013, https://doi.org/10.1373/clinchem.2017.274266
- Aptamer Oligonucleotides as Potential Therapeutics in Hematologic Diseases vol.19, pp.10, 2019, https://doi.org/10.2174/1389557517666171002160526
- Radiolabelled Aptamers for Theranostic Treatment of Cancer vol.12, pp.1, 2013, https://doi.org/10.3390/ph12010002
- Updates on Aptamer Research vol.20, pp.10, 2019, https://doi.org/10.3390/ijms20102511
- Recent Advances in Degradable Hybrids of Biomolecules and NGs for Targeted Delivery vol.24, pp.10, 2013, https://doi.org/10.3390/molecules24101873
- Application of Gold Nanoparticles for High-Sensitivity Fluorescence Polarization Aptamer Assay for Ochratoxin A vol.14, pp.7, 2013, https://doi.org/10.1134/s1995078019040116
- Facile and Efficient Chemoenzymatic Semisynthesis of Fc-Fusion Compounds for Half-Life Extension of Pharmaceutical Components vol.30, pp.9, 2019, https://doi.org/10.1021/acs.bioconjchem.9b00235
- Internalized Functional DNA Aptamers as Alternative Cancer Therapies vol.11, pp.None, 2013, https://doi.org/10.3389/fphar.2020.01115
- Conjugating biomaterials with photosensitizers: advances and perspectives for photodynamic antimicrobial chemotherapy vol.19, pp.4, 2020, https://doi.org/10.1039/c9pp00398c
- Chemically Modified Aptamers in Biological Analysis vol.3, pp.5, 2020, https://doi.org/10.1021/acsabm.0c00062
- Report on biopharmaceutical profile of recent biotherapeutics and insilco docking studies on target bindings of known aptamer biotherapeutics vol.36, pp.2, 2020, https://doi.org/10.1080/02648725.2020.1858395
- The Ca 2+ ‐Regulated Photoprotein Obelin as a Tool for SELEX Monitoring and DNA Aptamer Affinity Evaluation vol.96, pp.5, 2013, https://doi.org/10.1111/php.13274
- Aptamers: Novel Therapeutics and Potential Role in Neuro-Oncology vol.12, pp.10, 2013, https://doi.org/10.3390/cancers12102889
- Binding Characteristics Study of DNA based Aptamers for E. coli O157:H7 vol.26, pp.1, 2013, https://doi.org/10.3390/molecules26010204
- Improving Thermodynamic Stability and Anticoagulant Activity of a Thrombin Binding Aptamer by Incorporation of 8-trifluoromethyl-2′-deoxyguanosine vol.64, pp.1, 2021, https://doi.org/10.1021/acs.jmedchem.0c01711
- Targeting Strategies for Enhancing Paclitaxel Specificity in Chemotherapy vol.9, pp.None, 2021, https://doi.org/10.3389/fcell.2021.626910
- Recent Progress and Opportunities for Nucleic Acid Aptamers vol.11, pp.3, 2021, https://doi.org/10.3390/life11030193
- Recent Progress in Aptamer Discoveries and Modifications for Therapeutic Applications vol.13, pp.8, 2013, https://doi.org/10.1021/acsami.0c05750
- Rationally Designed Multivalent Aptamers Targeting Cell Surface for Biomedical Applications vol.13, pp.8, 2013, https://doi.org/10.1021/acsami.0c15644
- Artificial Intelligence in Aptamer-Target Binding Prediction vol.22, pp.7, 2021, https://doi.org/10.3390/ijms22073605
- ANTI‐ epithelial cell adhesion molecule RNA aptamer‐conjugated liposomal doxorubicin as an efficient targeted therapy in mice bearing colon carcinoma tumor vol.37, pp.3, 2021, https://doi.org/10.1002/btpr.3116
- In situ food-borne pathogen sensors in a nanoconfined space by surface enhanced Raman scattering vol.188, pp.6, 2021, https://doi.org/10.1007/s00604-021-04864-4
- Future Perspectives of Therapeutic, Diagnostic and Prognostic Aptamers in Eye Pathological Angiogenesis vol.10, pp.6, 2013, https://doi.org/10.3390/cells10061455
- Electrochemical aptasensors for the detection of hepatocellular carcinoma-related biomarkers vol.45, pp.34, 2013, https://doi.org/10.1039/d1nj01042e
- In silico screening of ssDNA aptamer against Escherichia coli O157:H7: A machine learning and the Pseudo K-tuple nucleotide composition based approach vol.95, pp.None, 2013, https://doi.org/10.1016/j.compbiolchem.2021.107568
- Aptamer-mediated doxorubicin delivery reduces HCC burden in 3D organoids model vol.341, pp.None, 2013, https://doi.org/10.1016/j.jconrel.2021.11.036