DOI QR코드

DOI QR Code

Keratinase Production by Recalcitrant Feather Degrading Pseudomonas Geniculata and Its Plant Growth Promoting Activity

난분해성 우모분해 Pseudomonas geniculata에 의한 케라틴 분해효소 생산 및 식물성장 촉진 활성

  • Go, Tae-Hun (College of Natural Resources & Life Science, Life and Industry Convergence Institute, Pusan National University) ;
  • Lee, Sang-Mee (College of Natural Resources & Life Science, Life and Industry Convergence Institute, Pusan National University) ;
  • Lee, Na-Ri (College of Natural Resources & Life Science, Life and Industry Convergence Institute, Pusan National University) ;
  • Jeong, Seong-Yun (Department of Medical Life Science, Catholic University of Daegu) ;
  • Hong, Chang-Oh (College of Natural Resources & Life Science, Life and Industry Convergence Institute, Pusan National University) ;
  • Son, Hong-Joo (College of Natural Resources & Life Science, Life and Industry Convergence Institute, Pusan National University)
  • 고태훈 (부산대학교 생명자원과학대학 및 생명산업융합연구원) ;
  • 이상미 (부산대학교 생명자원과학대학 및 생명산업융합연구원) ;
  • 이나리 (부산대학교 생명자원과학대학 및 생명산업융합연구원) ;
  • 정성윤 (대구가톨릭대학교 의생명과학과) ;
  • 홍창오 (부산대학교 생명자원과학대학 및 생명산업융합연구원) ;
  • 손홍주 (부산대학교 생명자원과학대학 및 생명산업융합연구원)
  • Received : 2013.04.03
  • Accepted : 2013.05.30
  • Published : 2013.11.29

Abstract

We investigated the optimal conditions for keratinase production by feather-degrading Pseudomonas geniculata H10 using one variable at a time (OVT) method. The optimal medium composition and cultural condition for keratinase production were determined to be glucose 0.15% (w/v), beef extract 0.08% (w/v), $KH_2PO_4$ 0.12% (w/v), $K_2HPO_4$ 0.02% (w/v), NaCl 0.07% (w/v), $MgSO_4{\cdot}7H_2O$ 0.03%, $MgCl_2{\cdot}6H_2O$ 0.04% along with initial pH 10 at 200 rpm and $25^{\circ}C$, respectively. The production yield of keratinase was 31.6 U/ml in an optimal condition, showing 4.6-fold higher than that in basal medium. The strain H10 also showed plant growth promoting activities. This strain had ammonification activity and produced indoleacetic acid (IAA), siderophore and a variety of hydrolytic enzymes such as protease, lipase and chitinase. Therefore, this study showed that P. geniculata H10 could be not only used to upgrade the nutritional value of feather wastes but also useful in situ biodegradation of feather wastes. Moreover, it is also a potential candidate for the development of biofertilizing agent applicable to crop plant soil.

Keywords

References

  1. Bertsch, A., Coello, N., 2005, A biotechnological process for treatment and recycling poultry feathers as a feed ingredient, Bioresource Technol., 96, 1703-1708. https://doi.org/10.1016/j.biortech.2004.12.026
  2. Bockle, B., Galunski, B., Muller, R., 1995, Characterization of a keratinolytic serine protease from Streptomyces pactum DSM40530, Appl. Environ. Microbiol., 61, 3705-3710.
  3. Bradford, M. M., 1976, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem., 72, 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  4. Chon, D. H., Kang, S. M., Kwon, T. J., 2003, Purification and some properties of protease produced by Pseudomonas sp. KP-364, Kor. J. Microbiol. Biotechnol., 31, 224-229.
  5. Dye, R., Pal, K. K., Bhatt, D. M., Chauhan, S. M., 2004, Growth promotion and yield enhancement of peanut (Arachis hypogaea L.) by application of plant growth-promoting rhizobacteria, Microbiol. Res., 159, 371-394. https://doi.org/10.1016/j.micres.2004.08.004
  6. Gerhardt, P., Murray, R. G. E., Costilow, R. N., Nester, E. W., Wood, W. A., Krieg, N. R., Phillips, G. B., 1981, Manual of methods for general bacteriology. American Society for Microbiology, Washington, D.C.
  7. Go, T. H., Jeong, J. H., Lee, N. R., Jeong, S. Y., Park, G. T., Son, H. J., 2012, Isolation and characterization of duck feather-degrading microorganism for treatment of recalcitrant ketinous waste, J. Environ. Sci., 21, 253-231.
  8. Hadas, A., Kautsky, L., 1994, Feather meal, a semi-slow release nitrogen fertilizer for organic farm, Fertilizer Res., 38, 165-170. https://doi.org/10.1007/BF00748776
  9. Jeong, J. H., Jeon, Y. D., Lee, O. M., Kim, J. D., Lee, N R., Park, G. T., Son, H. J., 2010a, Characterization of a multifunctional feather-degrading Bacillus subtilis isolated from forest soil, Biodegradation, 21, 1029-1040. https://doi.org/10.1007/s10532-010-9363-y
  10. Jeong, J. H., Park, K. H., Oh, D. J., Hwang, D. Y., Kim, H. S., Lee, C. Y., Son, H. J. 2010b. Keratinolytic enzyme-mediated biodegradation of recalcitrant feather by a newly isolated Xanthomonas sp. P5, Polym. Degrad. Stab., 95, 1969-1977. https://doi.org/10.1016/j.polymdegradstab.2010.07.020
  11. Khalid, A., Arshad, M., Zahir, Z. A., 2004, Screening of plant growth-promoting rhizobacteria for improving growth and yield of wheat, J. Appl. Microbiol., 96, 473-480. https://doi.org/10.1046/j.1365-2672.2003.02161.x
  12. Lee, K. H., Park, K. K., Park, S. H., Lee, J. B., 1987, Isolation, purification and characterization of keratinolytic proteinase from Microsporum canis, Yonsei Med. J., 28, 131-138. https://doi.org/10.3349/ymj.1987.28.2.131
  13. Lin, X., Lee, C. G., Casale, E. S., Shih, J. C. H., 1992, Purification and characterization of a keratinase from a feather-degrading Bacillus licheniformis strain, Appl. Environ. Microbiol., 58, 3271-3275.
  14. Mitsuiki, S., Ichikawa, M., Oka, T., Sakai, M., Moriyama, Y., Sameshima, Y., Goto, M., Furukawa, K., 2004, Molecular characterization of a keratinolytic enzyme from an alkaliphilic Nocardiopsis sp. TOA-1, Enz. Microb. Technol., 34, 482-489. https://doi.org/10.1016/j.enzmictec.2003.12.011
  15. Nustorova, M., Braikova, D., Gousterova, A., Vasileva- Tonkova, E., Nedkov, P., 2005, Chemical, microbiological and plant analysis of soil fertilized with alkaline hydrolysate of sheep's wool waste, World J. Microbiol. Biotechnol., 22, 383-390.
  16. Onifade, A. A., Al-Sane, N. A., Al-Musallam, A. A., Al-Zarban, S., 1998, Potentials for biotechnological applications of keratin-degrading microorganisms and their enzymes for nutritional improvement of feathers and other keratins as livestock feed resources, Bioresource Technol., 66, 1-11. https://doi.org/10.1016/S0960-8524(98)00033-9
  17. Pandey, P., Kang, S. C., Gupta, C. P., Maheshwari, D. K., 2005, Rhizosphere competent Pseudomonas areuginosa GRC1 produces characteristic siderophore and enhances growth of Indian mustard (Brassica campestris), Curr. Microbiol., 51, 303-309. https://doi.org/10.1007/s00284-005-0014-1
  18. Papadoulos, M. C., Ketelaars, E. H., 1986, Effects of processing time and moisture content on amino acid composition and nitrogen characteristics of feather meal, Anim. Feed Sci. Technol., 14, 279-290. https://doi.org/10.1016/0377-8401(86)90100-8
  19. Parag, A. M., Hassan, M. A., 2004, Purification, characterization and immobilization of a keratinase from Aspergillus oryzae, Enz. Microb. Technol., 34, 85-93. https://doi.org/10.1016/j.enzmictec.2003.09.002
  20. Rao, M. B., Tanksale, A. M., Ghatge, M. S., Deshpande, V. V., 1998, Molecular and biotechnological aspects of microbial proteases, Microbiol. Mol. Biol. Rev., 62, 597-635.
  21. Riffel, A., Brandelli, A., Bellato, C. M., Souza, G. H. M. F., Eberlin, M. N., Tavares, F. C. A., 2007, Purification and characterization of a keratinolytic metalloprotease from Chryseobacterium sp. kr6, J. Biotechnol., 128, 693-703. https://doi.org/10.1016/j.jbiotec.2006.11.007
  22. Sangali, S., Brandelli, A., 2000, Feather keratin hydrolysis by a Vibrio sp. strain kr2, J. Appl. Microbiol., 89, 735-743. https://doi.org/10.1046/j.1365-2672.2000.01173.x
  23. Schwyn, B., Neilands, J. B., 1987, Universal chemical assay for the detection and determination of siderophores, Anal. Biochem., 160, 47-56. https://doi.org/10.1016/0003-2697(87)90612-9
  24. Suntornsuk, W., Suntornsuk, L., 2003, Feather degradation by Bacillus sp. FK46 in submerged cultivation, Bioresource Technol., 86, 239-243. https://doi.org/10.1016/S0960-8524(02)00177-3
  25. Tang, Y. W., Bonner, J., 1947, The enzymatic inactivation of indoleacetic acid I. Some characteristics of the enzyme contained in pea seedlings, Arch. Biochem., 13, 17-25.
  26. Wang, J. J., Shih, J. C. H., 1999, Fermentation production of keratinase from Bacillus licheniformis PWD-1 and a recombinant B. subtilis FDB-29, J. Ind. Microbiol. Biotechnol., 22, 608-616. https://doi.org/10.1038/sj.jim.2900667
  27. Wawrzkiewicz, K., Lobarzewski, J., Wolski, T., 1987, Intracellular keratinase of Trichophyton gallinae. J. Med. Vet. Mycol., 25, 261-268. https://doi.org/10.1080/02681218780000601
  28. Zaghloul, T. I., 1998, Cloned Bacillus subtilis alkaline protease (apr A) gene showing high level of keratinolytic activity, Appl. Biochem. Biotechnol., 70-72, 199-205. https://doi.org/10.1007/BF02920136

Cited by

  1. Biological synthesis and characterisation of silver nanoparticles using Pseudomonas geniculata H10 for pharmaceutical activity vol.12, pp.6, 2018, https://doi.org/10.1049/iet-nbt.2018.0014