DOI QR코드

DOI QR Code

Computational material modeling of masonry walls strengthened with fiber reinforced polymers

  • Koksal, H. Orhun (Department of Civil Engineering, Canakkale 18 Mart University) ;
  • Jafarov, Oktay (Khazar University, Neftchilar Campus) ;
  • Doran, Bilge (Department of Civil Engineering, Yildiz Technical University) ;
  • Aktan, Selen (Department of Civil Engineering, Canakkale 18 Mart University) ;
  • Karakoc, Cengiz (Department of Civil Engineering, Bogazici University)
  • Received : 2013.02.20
  • Accepted : 2013.11.09
  • Published : 2013.12.10

Abstract

This paper aims to develop a practical approach to modeling of fiber reinforced polymers (FRP) strengthened masonry panels. The main objective is to provide suitable relations for the material characterization of the masonry constituents so that the finite element applications of elasto-plastic theory achieves a close fit to the experimental load-displacement diagrams of the walls subjected to in-plane shear and compression. Two relations proposed for masonry columns confined with FRP are adjusted for the cohesion and the internal friction angle of both units and mortar. Relating the mechanical parameters to the uniaxial compression strength and the hydrostatic pressure acting over the wall surface, the effects of major and intermediate principal stresses ${\sigma}_1$ and ${\sigma}_2$ on the yielding and the shape of the deviatoric section are then reflected into the analyses. Performing nonlinear finite element analyses (NLFEA) for the three walls tested in two different studies, their stress-strain response and failure modes are eventually evaluated through the comparisons with the experimental behavior.

Keywords

References

  1. Berto, L., Saetta, A., Scotta, R. and Vitaliani, R. (2002), "An orthotropic damage model for masonry structures", Int. J. Numer. Meth. Eng., 55(2), 127-157. https://doi.org/10.1002/nme.495
  2. Brasile, S., Casciaro, R. and Formica, G. (2010), "Finite element formulation for nonlinear analysis of masonry walls", Comput. Struct., 88(3-4), 135-143. https://doi.org/10.1016/j.compstruc.2009.08.006
  3. Capozucca, R. (2011), "Experimental analysis of historic masonry walls reinforced by CFRP under in- plane cyclic loading", Compos. Struct., 94(1), 277-289. https://doi.org/10.1016/j.compstruct.2011.06.007
  4. Chaimoon, K. and Attard, M.M. (2007), "Modeling of unreinforced masonry walls under shear and compression", Eng. Struct., 29(9), 2056-2068. https://doi.org/10.1016/j.engstruct.2006.10.019
  5. Cheema, T.S. and Klingner, R.E. (1986), "Compressive strength of concrete masonry prisms", J. Am. Concrete Ins., 83(1), 88-97.
  6. Chen, W.F. and Lui, E.M. (1987), Structural Stability: Theory and Implementation, Elsevier, New York.
  7. Chen, W.F. and Han, D.J. (1988), Plasticity for Structural Engineers, Springer-Verlag, New York.
  8. DeBuhan, P. and DeFelice, G. (1997), "A homogenization approach to the ultimate strength of brick masonry", J. Mech. Phy. Solid., 45(7), 1085-1104. https://doi.org/10.1016/S0022-5096(97)00002-1
  9. Dhanasekar, M., Page, A.W. and Kleeman, P.W. (1984), "A finite element model for the in-plane behavior of brick masonry", Proc. 9th Australasian Conference on Mechanisms of Structures, 262-267.
  10. Doran, B., Köksal, H.O. and Turgay, T. (2009), "Nonlinear finite element modeling of rectangular/square concrete columns confined with FRP", Mater. Des., 30(8), 3066-3075. https://doi.org/10.1016/j.matdes.2008.12.007
  11. Formica, G., Sansalone, V. and Casciaro, R. (2002), "A mixed solution strategy for the nonlinear analysis of brick masonry walls", Comput. Meth. Appl. Mech. Eng., 191(51-52), 5847-5876. https://doi.org/10.1016/S0045-7825(02)00501-7
  12. Ganesan, T. and Ramamurthy, K. (1992), "Behavior of concrete hollow-block masonry prisms under axial-compression", J. Struct. Eng., 118(7), 1751-1769. https://doi.org/10.1061/(ASCE)0733-9445(1992)118:7(1751)
  13. Ganz, H.R. and Thurlimann, B. (1983), "Strength of brick walls under normal force and shear", Proc. 8th Int. Symp. On Load Bearing Brickwork, London, U.K.
  14. Giambanco, G., Rizzo, S. and Spallino, R. (2001), "Numerical analysis of masonry structures via interface models", Comput. Meth. Appl. Mech. Eng., 190(49-50), 6493-6511. https://doi.org/10.1016/S0045-7825(01)00225-0
  15. Grande, E., Milani, G. and Sacco, E. (2008), "Modelling and analysis of FRP-strengthened masonry panels", Eng. Struct., 30(7), 1842-1860. https://doi.org/10.1016/j.engstruct.2007.12.007
  16. Haach, V.G., Vasconcelos, G. and Lourenco, P.B. (2010), "Influence of the geometry of units and filling of vertical joints in the compressive and tensile strength of masonry", Mater. Sci. Forum, Special Issue, 636-637, 1321-1328.
  17. Hamid, A.A. and Chukwunenye, A.O. (1986), "Compression behavior of concrete masonry prisms", J. Struct. Eng., 112(3), 605-613. https://doi.org/10.1061/(ASCE)0733-9445(1986)112:3(605)
  18. Jafarov, O. (2012), "Lifli polimerle guclendirilmis yigma duvarların modellenmesi", Ph.D. Thesis, Civil Engineering, Yildiz Technical University, Istanbul.
  19. Kaushik, H.B., Rai, D.C. and Jain, S.K. (2007), "Stress-strain characteristics of clay brick masonry under uniaxial compression", J. Mater. Civil Eng., 19(9), 728-739. https://doi.org/10.1061/(ASCE)0899-1561(2007)19:9(728)
  20. Khalil, M.R.A., Shrive, N.G. and Ameny, P. (1987), "3 dimensional stress-distribution in concrete masonry prisms and walls", Mag. Concrete Res., 39(139), 73-82. https://doi.org/10.1680/macr.1987.39.139.73
  21. Koksal, H.O. and Karakoç, C. (1999), "An isotropic damage model for concrete", Mater. Struct., 32(222), 611-617. https://doi.org/10.1007/BF02480497
  22. Köksal, H.O., Doran, B., Ozsoy, A.E. and Alacalı, S.N. (2004), "Nonlinear modeling of concentrically loaded reinforced blockwork masonry columns", Can. J. Civil Eng., 31(6), 1012-1023. https://doi.org/10.1139/l04-058
  23. Köksal, H.O. and Arslan, G. (2004) "Damage analysis of RC beams without web reinforcement", Mag. Concrete Res., 56(4), 231-241. https://doi.org/10.1680/macr.2004.56.4.231
  24. Köksal, H.O., Karakoç, C. and Yıldırım, H. (2005), "Compression behavior and failure mechanisms of concrete masonry prisms", J. Mater. Civil Eng., 17(1), 107-115. https://doi.org/10.1061/(ASCE)0899-1561(2005)17:1(107)
  25. Köksal, H.O. (2006), "A failure criterion for RC members under triaxial compression", Struct. Eng. Mech., 24(2), 137-154. https://doi.org/10.12989/sem.2006.24.2.137
  26. Köksal, H.O., Doran, B. and Turgay, T. (2009), "A practical approach for modeling FRP wrapped concrete columns", Constr. Build. Mater., 23(3), 1429-1437. https://doi.org/10.1016/j.conbuildmat.2008.07.008
  27. Köksal, H.O., Aktan, S. and Kuruşçu, A.O. (2012), "Elasto-plastic finite element analysis of FRP-confined masonry columns", J. Compos. Construct., 16(4), 407-417. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000268
  28. Krstevska, L., Tashkov, Lj., Arun, G. and Akoz, F. (2007), "Evaluation of seismic behavior of historical monuments", SHH07 International Symposium on Studies on Historical Heritage Symposium Book, Antalya, Turkey.
  29. La Mendola, L., Failla, A., Cucchiara, C. and Accardi, M. (2009), "Debonding phenomena in CFRP strengthened calcarenite masonry walls and vaults", Adv. Struct. Eng., 12(5), 745-760. https://doi.org/10.1260/136943309789867872
  30. Lourenco, P.B. (1996), "Computational strategies for masonry structures", Ph.D. Thesis, Civil Engineering and Geosciences, Delft University, Eindhoven, Netherland.
  31. Lourenco, P.B. and Rots, J.G. (1997), "Multisurface interface model for analysis of masonry structures", J. Eng. Mech., 123(7), 660-668. https://doi.org/10.1061/(ASCE)0733-9399(1997)123:7(660)
  32. LUSAS Finite Element System, Version 14.5-2 (2011), FEA Ltd, Surrey, UK.
  33. Maïolino, S. and Luong, M.P. (2009), "Measuring discrepancies between coulomb and other geotechnical criteria: drucker-prager and matsuoka-nakai", Proceedings of the 7th EUROMECH Solid Mechanics Conference, Lisbon, Portugal, September.
  34. Marcari, G., Fabbrocino, G., Manfredi, G. and Prota, A. (2007), "Experimental and numerical evaluation of tuff masonry panels shear seismic capacity", Proceedings of the 10th North American Masonry Conference, St. Louis, USA.
  35. Mele, E., De Luca, A. and Giordano, A. (2003), "Modelling and analysis of a basilica under earthquake loading", J. Cultur. Heritage, 4(4), 355-367.
  36. Milani, G., Lourenco, P.B. and Tralli, A. (2006), "Homogenised limit analysis of masonry walls, part I: failure surfaces", Comput. Struct., 84(3-4), 166-180. https://doi.org/10.1016/j.compstruc.2005.09.005
  37. Milani, G. (2010), "3D FE limit analysis model for multi-layer masonry structures reinforced with FRP strips", Int. J. Mech. Sci., 52(6), 784-803. https://doi.org/10.1016/j.ijmecsci.2010.01.004
  38. Milani, G., Milani, E. and Tralli, A. (2010), "Approximate limit analysis of full scale FRP-reinforced masonry buildings through a 3D homogenized FE package", Compos. Struct., 92(4), 918-935. https://doi.org/10.1016/j.compstruct.2009.09.037
  39. Mohamad, G., Lourenco, P.B. and Roman, H.R. (2005), "Mechanical behavior assessment of concrete block masonry prisms under compression", Int. Conf. on Concrete for Structures, Coimbra, Portugal.
  40. Mohebkhah, A., Tasnimi, A.A. and Moghadam, H.A. (2008), "Nonlinear analysis of masonry-infilled steel frames with openings using discrete element method", J. Constr. Steel Res., 64(12), 1463-1472. https://doi.org/10.1016/j.jcsr.2008.01.016
  41. Pivonka, P. and Willam, K. (2003), "The effect of the third invariant in computational plasticity", Eng. Comput., 20(5/6), 741-753. https://doi.org/10.1108/02644400310488844
  42. Popehn, J.R.B., Schultz, A.E., Lu, M., Stolarski, H.K. and Ojard, N.C. (2008), "Influence of transverse loading on the stability of slender unreinforced masonry walls", Eng. Struct., 30(10), 2830-2839. https://doi.org/10.1016/j.engstruct.2008.02.016
  43. Ramamurthy, K. (1995), "Behavior of grouted concrete hollow block masonry prisms", Mag. Concrete Res., 47(173), 345-354. https://doi.org/10.1680/macr.1995.47.173.345
  44. Sayed Ahmed, E.Y. and Shrive, N.G. (1996), "Nonlinear finite-element model of hollow masonry", J. Struct. Eng., 122(6), 683-690. https://doi.org/10.1061/(ASCE)0733-9445(1996)122:6(683)
  45. Shing, P.B., Lofti, H.R., Barzegarmehrabi, A. and Brunner, J. (1992), "Finite-element analysis of shear resistance of masonry wall panels with and without confining frames", Proceedings of the Tenth World Conference on Earthquake Engineering, 1-10, 2581-2586.
  46. Stratford, T., Pascale, G., Manfroni, O. and Bonfiglioli, B. (2004), "Shear strengthening masonry panels with sheet glass-fiber reinforced polymer", J. Compos. Constr., 8(5), 434-443. https://doi.org/10.1061/(ASCE)1090-0268(2004)8:5(434)
  47. Tasnimi, A.A. and Farzin, M. (2006), "Inelastic behavior of RC columns under cyclic loads, based on cohesion and internal friction angle of concrete", Modar. Tech. Eng. J., ISSN, 23, 29-40.
  48. Tzamtzis, A.D. and Asteris, P.G. (2003), "Finite element analysis of masonry structures: part I- review of previous work", North American Masonry Conference, Clemson, South Carolina, June.
  49. Yu, T., Teng, J.G., Wong, Y.L. and Dong, S.L. (2010), "Finite element modeling of confined concrete-I: drucker-prager type plasticity model", Eng. Struct., 32(3), 665-679. https://doi.org/10.1016/j.engstruct.2009.11.014

Cited by

  1. In-Plane Shear Behavior of Traditional Masonry Walls vol.11, pp.2, 2017, https://doi.org/10.1080/15583058.2016.1207114
  2. Shear resistance estimation for unreinforced masonry walls based on Gaussian process models pp.2048-4011, 2019, https://doi.org/10.1177/1369433218802435
  3. Investigating loading rate and fibre densities influence on SRG - concrete bond behaviour vol.34, pp.6, 2020, https://doi.org/10.12989/scs.2020.34.6.877
  4. Investigating loading rate and fibre densities influence on SRG - concrete bond behaviour vol.34, pp.6, 2020, https://doi.org/10.12989/scs.2020.34.6.877