DOI QR코드

DOI QR Code

Microstructure and Mechanical Properties of ODS Ferrite Produced by Reactive Milling for the MSR Suppression

MSR (Mechanically induced Self-sustaining Reaction)이 억제된 반응성 밀링에 의해 제조된 분산강화 페라이트의 미세조직과 기계적 특성

  • Hwang, Seung J. (Dep't of Materials Science and Engineering, Daejin University)
  • Received : 2013.08.22
  • Accepted : 2013.09.10
  • Published : 2013.11.30

Abstract

Oxide Dispersion Strengthened (ODS) Fe with $Al_2O_3$ dispersoid was successfully produced by reactive milling with a mixture of Fe, $Fe_3O_4$ (Magnetite), $Fe_2O_3$ (Hematite) and Al reactants at cryogenic temperature. The milled powders were consolidated by Vacuum Hot Press (HP) at 1323 K, and the consolidated materials were characterized by Transmission Electron Microscopy (TEM), Scanning Transmission Electron Microscopy (STEM), and Energy Dispersive Spectroscopy (EDS); the yield strength and the hardness of the consolidated materials were determined by compressive test and Vickers hardness test at room temperature. The grain size of the materials was estimated by X-ray Diffraction technique using the scherrer's formula. The TEM observations showed that the microstructure was comprised with a mixture of nanocrystalline Fe matrix and $Al_2O_3$ nano-dispersoids with a bimodal size distribution; the 0.2% off-set yield strength of the materials was as high as $758{\pm}29$ MPa and the Vickers hardness was $358{\pm}2$. The effect of the cryogenic milling and addition of extra Fe powder was discussed on the suppression of MSR (Mechanically induced Self-sustaining Reaction) for the desired microstructural evolution of ODS alloys.

Keywords

References

  1. J. S. Benjamin : Metall. Trans. A1 (1970) 2943.
  2. L. G. Wright and A. Wilox : Metall. Trans. A5 (1974) 957.
  3. J. S. Benjamin : Metal powder Report, 45 (1990) 122. https://doi.org/10.1016/S0026-0657(10)80124-9
  4. S. J. Hwang : J. Metastable and Nanocrystalline Materials, 2-6 (1999) 581.
  5. C. Suryanarayana : In: Mechanical Alloying and Milling, Marcel Dekker, NY (2004) 419.
  6. C. C. Koch, O. B. Cavin, C. G. McKamey and J. O. Scarbourgh : Appl. Phys.Lett. 43 (1983) 1017. https://doi.org/10.1063/1.94213
  7. MSherif El-Eskandarany, K. Aoki, K. Sumiyama, Ksuzuki : Appl. Phys. Lett. 70 (1997).
  8. M. Sherif El-Eskandarany, H. N. El-Bahnasawy, H. A. Ahmed and N. A. Eissa : J. Alloys Comp, 314 (2001).
  9. A. Sugiyama, K. Kobayashi, A. Misutomo, K. Ozaki and T. Nishio : J. Jpn. Soc. Powder Met, JSPM 47 (2000) 327. https://doi.org/10.2497/jjspm.47.327
  10. S.-I. Hahn and S.-J. Hwang : J. Alloys Comp, 403 (2009) 207.
  11. D. L. Zhang, S. Raynova, C. C. Koch, R. O. Scattergood and K. M. Yousef : Mat. Sci. Eng. A410-411 (2005) 375-380.
  12. S.-J. Hwang and J.-H. Lee : Mat. Sci. Eng. A 405 (2005) 140-146.
  13. G. B. Schaffer and P. G. McCormick : Appl. Phys. Lett. 55 (1989) 45. https://doi.org/10.1063/1.101750
  14. G. B. Schaffer and P. G. McCormick : Met. Trans. A 21 (1990) 2789. https://doi.org/10.1007/BF02646073
  15. D. Y. Ying and D. L. Zhang : Mat. Sci Eng. A286 (2000) 152-156.
  16. T. Venugopal, K. Prasad Rao, B. S. Murty : Mat. Sci Eng. A393 (2005) 382.
  17. P. M. Botta, R. C. Mercader, E. F. Aglietti and J. M. Porto Lopez : Scripta Mat. 48 (2003) 1093-1098. https://doi.org/10.1016/S1359-6462(02)00630-9
  18. R. K. Guduru, R. O. Scattergood, C. C. Koch, K. L. Murty, S. Furuswamy and M. K. McCarter : Scripta Mat. 54 (2006) 1879-1883. https://doi.org/10.1016/j.scriptamat.2006.02.014
  19. T. Mousavi, F. Karimzadeh and M. H. Abbasi : J. Alloys Comp. 467 (2009) 173-178. https://doi.org/10.1016/j.jallcom.2007.11.136
  20. N. Forouzanmehr, F. Karimzadeh and M. H. Enayati : J. Alloys Comp. 478 (2009) 257-259. https://doi.org/10.1016/j.jallcom.2008.12.047
  21. H. Zuhailawati and Y. Mahani : J. Alloys Comp. 476 (2009) 142-146. https://doi.org/10.1016/j.jallcom.2008.09.018
  22. D. L. Zhang amd J. J. Richmond : J Mat Sci 34 (1999) 701. https://doi.org/10.1023/A:1004504425653
  23. N. Nachum, N. A. Fleck, M. F. Ashby, A. Colella and P. Matteazzi : Mat. Sci Eng. A 527 (2010) 5065.
  24. Tschakarov Chr G, Gospodinov GG, Bontschev Z. : J Solid State Chem 41 (1982) 244. https://doi.org/10.1016/0022-4596(82)90142-6
  25. L. Takacs : Prog. in Mat. Sci, 47 (2002) 355-414. https://doi.org/10.1016/S0079-6425(01)00002-0
  26. 26. P. G. McCormick : Materials Transaction, JIM2 (1995) 161.
  27. X선 회절분석, 김문집, 서일환, 반도출판사, 1993, P254-256.
  28. S. Z. Anvari, F. Karimaadeh and M. H. Enayati : Journal of Alloys and Compounds 477 (2009) 178-181. https://doi.org/10.1016/j.jallcom.2008.10.043
  29. T. Venugopal, K. Prasad Rao and B. S. Murty : Materials Science and Engineering A 393 (2005) 382-386. https://doi.org/10.1016/j.msea.2004.10.035
  30. G. Mulas, M. Monagheddu, S. Doppiu, F. Cocco, F. maglia and U. Anselmi Tamburini : Solid State Ionics 141-142 (2001) 649-656. https://doi.org/10.1016/S0167-2738(01)00799-8
  31. Z. A. Munir and U. Anselmi-Tamburini : Mat Sci Rep 3 (1989) 277. https://doi.org/10.1016/0920-2307(89)90001-7
  32. J. J. Moore and J. J. Feng : Prog Mater Sci 39 (1995) 243-275. https://doi.org/10.1016/0079-6425(94)00011-5
  33. Z. A. Munir, U. Anselmi-Tamburini Am Ceram Soc Bull 67 (1988) 342.
  34. J. A. Rodrigues, V. C. Pandolfelli, W. J. Botta, R. Tomasi, B. Derby and R. Stevens : J. Mater Sci Lett 10 (1991) 819. https://doi.org/10.1007/BF00724748
  35. L. Takacs : Prog. in Mat. Sci. 47 (2002) 355-414. https://doi.org/10.1016/S0079-6425(01)00002-0
  36. W. Liu and P. G. McCormick : Mater Sci Forum 315-317 (1999) 552. https://doi.org/10.4028/www.scientific.net/MSF.315-317.552
  37. G. Concas, A. Corrias, E. Manca, G. Marongiu, G. Paschinna, G. Spano, Z. Naturforsch 53 A (1998) 239.
  38. M. Pardavi-Horvath and L. Takacs : IEEE Trans Magn 28 (1992) 3186. https://doi.org/10.1109/20.179753
  39. L. Takacs, In: S. Komarnemi, J. C parker, F. J Thomas editors. Nanophase and nanocomposite materials, Pittsburgh: MRS Symp. Proc. 286 (1993) 413.
  40. M. Mingliang, L. Xinkuan, X. Shengqi, C. Donglang and Z. Jingen : J. Materials Processing Technology 116 (2001) 124-127. https://doi.org/10.1016/S0924-0136(01)01000-7
  41. S.-I. Hahn, Y.-H. Hong and S.-J. Hwang : J. of the Korean Society for Heat Treatment, 25 (2012) 138-145. https://doi.org/10.12656/jksht.2012.25.3.138
  42. S. Cheng, E. Ma, Y. M. Wang, L. J. Kecskes, K. M. Youssef, C. C. Koch, U. P. Trociewitz and K. Han : Acta Mater. 53 (2005) 1521-1533. https://doi.org/10.1016/j.actamat.2004.12.005
  43. Y. M. Wang, K. Wang, D. Pan, K. Lu, K. J. Hemker and E. Ma : Scripta Mater 48 (2003) 1581. https://doi.org/10.1016/S1359-6462(03)00159-3

Cited by

  1. Synthesis of aluminum oxide dispersed α-Fe with nano sized grains by simple milling vol.638, 2015, https://doi.org/10.1016/j.jallcom.2015.03.043