DOI QR코드

DOI QR Code

화학적 합성법을 이용한 마이크론 이하급 2SnO·(H2O) 분말의 합성과 하소 특성

Synthesis of Sub-Micron 2SnO·(H2O) Powders Using Chemical Reduction Process and Thermal Calcination

  • 지상수 (서울과학기술대학교 신소재공학과) ;
  • 이종현 (서울과학기술대학교 신소재공학과)
  • Chee, Sang-Soo (Department of Materials Science & Engineering, Seoul National University of Science and Technology) ;
  • Lee, Jong-Hyun (Department of Materials Science & Engineering, Seoul National University of Science and Technology)
  • 투고 : 2013.10.23
  • 심사 : 2013.10.25
  • 발행 : 2013.11.27

초록

Synthesis of sub-micron $2SnO{\cdot}(H_2O)$ powders by chemical reduction process was performed at room temperature as function of viscosity of methanol solution and molecular weight of PVP (polyvinylpyrrolidone). Tin(II) 2-ethylhexanoate and sodium borohydride were used as the tin precursor and the reducing agent, respectively. Simultaneous calcination and sintering processes were additionally performed by heating the $2SnO{\cdot}(H_2O)$ powders. In the synthesis of the $2SnO{\cdot}(H_2O)$ powders, it was possible to control the powder size using different combinations of the methanol solution viscosity and the PVP molecular weight. The molecular weight of PVP particularly influenced the size of the synthesized $2SnO{\cdot}(H_2O)$ powders. A holding time of 1 hr in air at $500^{\circ}C$ sufficiently transformed the $2SnO{\cdot}(H_2O)$ into $SnO_2$ phase; however, most of the PVP (molecular weight: 1,300,000) surface-capped powders decomposed and was removed after heating for 1 h at $700^{\circ}C$. Hence, heating for 1 h at $500^{\circ}C$ made a porous $SnO_2$ film containing residual PVP, whereas dense $SnO_2$ films with no significant amount of PVP formed after heating for 1 h at $700^{\circ}C$.

키워드

참고문헌

  1. A. R. Phani, S. Manorama and V. J. Rao, Mater. Chem. Phys., 58, 101 (1999). https://doi.org/10.1016/S0254-0584(98)00251-X
  2. K. Wada and M. Egashira, Sens. Actuators B, 53, 147 (1998). https://doi.org/10.1016/S0925-4005(99)00013-1
  3. S. -C. Lee J. -H. Lee, T. -S. Oh and Y. -H. Kim, Sol. Energy Mater. Sol. Cells, 75, 481 (2003). https://doi.org/10.1016/S0927-0248(02)00201-5
  4. S. -M. Paek, E. J. Yoo and I. Honma, Nano Lett., 9(1), 72 (2009). https://doi.org/10.1021/nl802484w
  5. F. Li, J. Song, H. Yang, S. Gan, Q. Zhang, D. Han, A. Ivaska and L. Niu, Nanotechnology, 20, 455602 (2009). https://doi.org/10.1088/0957-4484/20/45/455602
  6. J. R. Brown, M. T. Cheney, P. W. Haycock, D. J. Houlton, A. C. Jones and E. W. Williams, J. Electrochem. Soc., 144, 295 (1997). https://doi.org/10.1149/1.1837398
  7. S. H. Park, Y. C. Son, W. S. Willis, S. L. Suib and K. E. Creasy, Chem. Mater. 10, 2389 (1998). https://doi.org/10.1021/cm970672x
  8. K. C. Song and J. H. Kim, J. Colloid Interface Sci., 212, 193 (1999). https://doi.org/10.1006/jcis.1998.6022
  9. Q. Pan, X. Dong, J. Zhang and L. He, Wuji Cailiao Xuebao, 12, 494 (1997).
  10. A. Dieguez, A. Romano-Rodriguez, J. R. Morante, J. Kappler, N. Barsan and W. Gopel, Sens. Actuators B, 60, 125 (1999). https://doi.org/10.1016/S0925-4005(99)00258-0
  11. I. -D. Kim, E. -K. Jeon, S. -H. Choi, D. -K. Choi and H. L. Tuller, J. Electroceram., 25, 159 (2010). https://doi.org/10.1007/s10832-010-9607-6
  12. N. S., Baik, G. Sakai, N. Miura and N. Yamazoe, J. Am. Soc., 83(12), 2983 (2000).
  13. M. Shoyama and N. Hashimoto, Sens. Actuators B, 93, 585 (2003). https://doi.org/10.1016/S0925-4005(03)00215-6
  14. D. Zhang, Z. Deng, J. Zhang and L. Chen, Mater. Chem. Phys., 98, 353 (2006). https://doi.org/10.1016/j.matchemphys.2005.09.038
  15. S. -S. Chee and J. -H. Lee, Electron. Mater. Lett., 8(6), 587 (2012). https://doi.org/10.1007/s13391-012-2086-y
  16. L. Y. Hsiao and J. G. Duh, Adv. Mater. Res., 685, 63 (2013). https://doi.org/10.4028/www.scientific.net/AMR.685.63
  17. S. -S. Chee and J. -H. Lee, Electron. Mater. Lett., 8(6), 587 (2012). https://doi.org/10.1007/s13391-012-2086-y
  18. S. Jeong, K. Woo, D. Kim, S. Lim, J. S. Kim, H. Shin, Y. Xia and J. Moon, Adv. Funct. Mater. 18, 679 (2008). https://doi.org/10.1002/adfm.200700902
  19. D. Chen, X. Qiao, X. Qiu and J. Chen, J. Mater. Sci., 44, 1076 (2009). https://doi.org/10.1007/s10853-008-3204-y
  20. K. X. Yao and H. C. Zeng, J. Phys. Chem. C, 111, 13301 (2007). https://doi.org/10.1021/jp072550q
  21. F. Bonte, K. Tekaia-Elhsissen and K. V. Sarathy, Bull. Mater. Sci., 23, 165 (2000). https://doi.org/10.1007/BF02719903
  22. Y. Zhang, J. Y. Liu, S. Ma, Y. J. Zhang, X. Zhao, X. D. Zhang and Z. D. Zhang, J. Mater. Sci. Mater. Med., 21, 1205 (2010). https://doi.org/10.1007/s10856-009-3881-3
  23. Z. Zhang, B. Zhao and L. Hu, J. Solid State Chem., 121, 105 (1996). https://doi.org/10.1006/jssc.1996.0015
  24. S. Hara, H. Sakamoto, M. Miyayama and T. Kudo, Solid State Ionics, 154-155, 679 (2002). https://doi.org/10.1016/S0167-2738(02)00517-9
  25. B. Mecheri, A. D'Epifanio, E. Traversa and S. Licoccia, J. Power Sources, 178, 554 (2008). https://doi.org/10.1016/j.jpowsour.2007.09.072
  26. N. C. Pramanik, S. Das and P. K. Biswas, Mater. Lett., 56, 671 (2002). https://doi.org/10.1016/S0167-577X(02)00574-8
  27. Y. K. Du, P. Yang, Z. G. Mou, N. P. Hua and L. Jiang, J. Appl. Polym. Sci., 99, 23 (2006). https://doi.org/10.1002/app.21886